Devoir 2

Exercice 1

Soit $f:[a,b]\mapsto\mathbb{R}$ de classe C^2 strictement croissante et strictement convexe sur [a,b]. On suppose que f(a)<0 et f(b)>0. Ainsi, l'équation f(x)=0 admet une unique solution dans [a,b] qu'on note α .

On définit la suite (x_n) par

$$\begin{cases} x_0 = a \\ x_{n+1} = x_n - \frac{f(x_n)(x_n - b)}{f(x_n) - f(b)}, \forall n \in \mathbb{N} \end{cases}$$

- 1. Montrer que x_{n+1} est l'abscisse du point d'intersection entre l'axe des abscisses et la droite qui passe par les points (b, f(b)) et $(x_n, f(x_n))$. Représenter graphiquement les premières itérations de la suite (x_n) .
- 2. Montrer par récurrence que $f(x_n) < 0$ et $x_n < b$ (on utilisera la convexité stricte de f).
- 3. En déduire que la suite (x_n) est croissante.
- 4. Montrer que (x_n) converge vers α .
- 5. Montrer que

$$\lim_{n \to +\infty} \frac{|x_{n+1} - \alpha|}{|x_n - \alpha|} = |g'(\alpha)|$$

où
$$g(x) = x - \frac{f(x)(x-b)}{f(x) - f(b)}$$

6. Montrer que $0 < g'(\alpha) < 1$. En déduire que la méthode est d'ordre 1.

Exercice 2

On considère la fonction $g: \mathbb{R}^2 \to \mathbb{R}$ définie par :

$$g(x,y) = x^3 - xy + y^2 - y.$$

- 1. Calculer le gradient $\nabla g(x,y)$ et la matrice hessienne $H_g(x,y)$, pour tout $(x,y) \in \mathbb{R}^2$.
- 2. Déterminer les éléments (x, y) tels que $\nabla g(x, y) = (0, 0)$. S'agit-il de minimiseurs de la fonction g?

Exercice 3

Soit A une matrice injective de taille $P \times N$ avec $P > N \ge 1$ et $b \in \mathbb{R}^P$. On cherche à minimiser la fonction

$$f: x \in \mathbb{R}^N \to ||Ax - b||^2$$

où $\|\cdot\|$ correspond à la norme euclidienne dans $\mathbb{R}^P.$

- 1. Donner les itérations de la méthode du gradient à pas optimal en exprimant le pas optimal α_n en fonction de A, b et x_n .
- 2. Si $A^tA = \text{Id}$, montrer que la méthode du gradient à pas optimal converge en une seule itération.