Allotted time : 2h

Exercice 1 We consider the function from \mathbb{R}^3 into \mathbb{R}

$$f(x) = \frac{1}{2}(x_2 - x_1)^2 + \frac{1}{2}(x_1 + 2)^2 + \frac{1}{2}x_3^2.$$

- 1. Compute the gradient $\nabla f(x)$ and the Hessian Hf(x).
- 2. Show that f has a unique global minimum at x^* .
- 3. Compute x^* and $f(x^*)$.

4. Let
$$\hat{x} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
. Compute $\nabla f(\hat{x})$.

5. Compute the minimum of the function $h_1 : \mathbb{R}^+ \to \mathbb{R}$

$$h_1(\alpha) = f(\hat{x} - \alpha \nabla f(\hat{x})).$$

6. Show that
$$\hat{d} = \begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix}$$
 is a descent direction at \hat{x} .

7. Show that it is possible to join x^* starting from \hat{x} in direction \hat{d} in one step.

Exercice 2 Consider the map $f : \mathbb{R}^2 \to \mathbb{R}$, $f(x) = (x_1 + 1)^2 + (x_2 - 1)^2$ and the minimization problem

Find inf f(x) under constraint $x_1x_2 = 1$.

- 1. Draw a sketch to illustrate the problem
 - (a) Draw the admissible domain D_a
 - (b) Describe the level curves $f^{-1}(c)$ for $c \in \{0, 1, 4\}$.
 - (c) Add these level curves on the previous graph
- 2. Does the problem have a solution (justify your answer)?
- 3. Show that the Lagrange Theorem hypotheses are satisfied.
- 4. Write the Lagrangian of the problem and compute its gradient with respect to x.
- 5. Compute the solution using the Lagrange theorem. It may be useful to use the identity $x^2 \pm x = (x \pm \frac{1}{2})^2 \frac{1}{4}$.
- 6. Add the points x^* such that $f(x^*) = \inf_{x \in D_a} f(x)$ on the graph of question 1.
- 7. Bonus. We change the constraint into $x_1x_2 \leq 1$. Is the solution modified? Justify your answer. Same question for the opposite constraint $x_1x_2 \geq 1$.