AIMS Sénégal

Numerical Optimization final exam - 2022/02/18 Allotted time : 2h
The students are allowed to have a one side A4 sheet of course notes. This sheet must be returned with the assigment

Exercice 1 We consider the function from \mathbb{R}^{2} into \mathbb{R}

$$
f(x)=\frac{1}{2}\left(x_{1}+x_{2}\right)^{2}+\frac{1}{2}\left(x_{1}-2\right)^{2}+\frac{1}{2}\left(x_{2}-1\right)^{2} .
$$

1. Compute the gradient $\nabla f(x)$ and the Hessian $H f(x)$.
2. Show that f has a unique global minimum at x^{\star}. Compute x^{\star} and $f\left(x^{\star}\right)$.
3. Let $\hat{x}=\binom{0}{1}$. Compute $\nabla f(\hat{x})$. Show that $d=\binom{1}{0}$ is a descent direction at \hat{x}.
4. Compute the minimum of the function $h_{1}: \mathbb{R}^{+} \rightarrow \mathbb{R}$

$$
h_{1}(\alpha)=f(\hat{x}+\alpha d) .
$$

5. Let $\hat{d}=-\nabla f(\hat{x})$. Compute the minimum of $h_{2}: \mathbb{R}^{+} \rightarrow \mathbb{R}$

$$
h_{2}(\alpha)=f(\hat{x}+\alpha \hat{d}) .
$$

6. Deduce from the previous question that \hat{d} is the "best" descent direction at \hat{x}.

Exercice 2 Consider the map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}, f(x)=x_{1}+x_{2}$ and the minimization problem Find $\inf f(x)$ under constraint $x_{1}^{2}+x_{2}^{2}=2$.

1. Draw a sketch to illustrate the problem : draw the admissible domain D_{a} and the level curves $f^{-1}(c)$ for $c \in\{-1,0,1\}$.
2. Does the problem have a solution (justify your answer)?
3. Show that the Local Extrema Theorem hypotheses are satisfied.
4. Compute the solution using this theorem.

Exercice 3 Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}, f(x)=x_{1} x_{2}$ and the minimization problem :

Find inf $f(x)$ under constraints $x_{1}^{2}+x_{2}^{2} \leq 2$ and $x_{1}+x_{2} \geq 0$.

1. Draw a sketch to illustrate the problem : draw the admissible domain D_{a} and the level curves $f^{-1}(c)$ for $c \in\{-1,0,1\}$.
2. Does the problem have a solution (justify your answer)?
3. Show that the hypotheses of the Karush-Kuhn-Tucker theorem are satisfied.
4. Find the points and Lagrange multipliers satisfying the KKT conditions.
5. Give the value of $p^{\star}=\inf _{D_{A}} f(x)$. Where is it reached?
