AIMS Sénégal

Numerical Optimization final exam - 2022/02/18 Allotted time : 2h

The students are allowed to have a one side A4 sheet of course notes. This sheet must be returned with the assignment

Exercice 1 We consider the function from \mathbb{R}^2 into \mathbb{R}

$$f(x) = \frac{1}{2}(x_1 + x_2)^2 + \frac{1}{2}(x_1 - 2)^2 + \frac{1}{2}(x_2 - 1)^2.$$

- 1. Compute the gradient $\nabla f(x)$ and the Hessian Hf(x).
- 2. Show that f has a unique global minimum at x^* . Compute x^* and $f(x^*)$.
- 3. Let $\hat{x} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Compute $\nabla f(\hat{x})$. Show that $d = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ is a descent direction at \hat{x} .
- 4. Compute the minimum of the function $h_1: \mathbb{R}^+ \to \mathbb{R}$

$$h_1(\alpha) = f(\hat{x} + \alpha d)$$

5. Let $\hat{d} = -\nabla f(\hat{x})$. Compute the minimum of $h_2 : \mathbb{R}^+ \to \mathbb{R}$

$$h_2(\alpha) = f(\hat{x} + \alpha \hat{d}).$$

6. Deduce from the previous question that \hat{d} is the "best" descent direction at \hat{x} .

Exercice 2 Consider the map $f : \mathbb{R}^2 \to \mathbb{R}$, $f(x) = x_1 + x_2$ and the minimization problem Find inf f(x) under constraint $x_1^2 + x_2^2 = 2$.

- 1. Draw a sketch to illustrate the problem : draw the admissible domain D_a and the level curves $f^{-1}(c)$ for $c \in \{-1, 0, 1\}$.
- 2. Does the problem have a solution (justify your answer)?
- 3. Show that the Local Extrema Theorem hypotheses are satisfied.
- 4. Compute the solution using this theorem.

Exercice 3 Consider the function $f : \mathbb{R}^2 \to \mathbb{R}$, $f(x) = x_1 x_2$ and the minimization problem :

Find inf f(x) under constraints $x_1^2 + x_2^2 \le 2$ and $x_1 + x_2 \ge 0$.

- 1. Draw a sketch to illustrate the problem : draw the admissible domain D_a and the level curves $f^{-1}(c)$ for $c \in \{-1, 0, 1\}$.
- 2. Does the problem have a solution (justify your answer)?
- 3. Show that the hypotheses of the Karush-Kuhn-Tucker theorem are satisfied.
- 4. Find the points and Lagrange multipliers satisfying the KKT conditions.
- 5. Give the value of $p^* = \inf_{D_A} f(x)$. Where is it reached?