Example Kepler’s problem

Find the parallelepiped of maximum volume inscribed in the ellipsoid

$$
\mathcal{E}=\{x \in \mathbb{R}^{3}, \underbrace{\left.x_{1}^{2} / a_{1}^{2}+x_{2}^{2} / a_{2}^{2}+x_{3}^{2} / a_{3}^{2}=1\right\}}
$$

Write the problem as a canonical optimisation problem

$$
\inf _{x_{1}{ }^{2} / a_{1}^{2}+x_{2}^{2} / a_{2}^{2}+x_{3}^{2} / a_{3}^{2}=1} f(x), \quad f(x)=-\prod_{i=1}^{3} x_{i}
$$

$$
\begin{array}{r}
\left\{\begin{array}{l}
x_{1} \geq 0 \\
x_{2} \geq 0 \\
x_{3} \geq 0
\end{array}\right\} \text { these constants one } \\
\text { ne cessanby inactive at } x^{*} \\
\text { be cause othe ix } \\
V\left(x^{*}\right)=0
\end{array}
$$

- Can we apply KKT theorem?
- Which constraints are active ?
- Lagrangian ?

Exemple Kepler’s problem

$x_{1}=0$ or $x_{2}=0$ or $x_{3}=0 \Rightarrow f(x)=0$! inequality constraints are inactive

$$
\ell(x, y)=-\prod_{i=1}^{3} x_{i}+y\left(x_{1}^{2} / a_{1}^{2}+x_{2}^{2} / a_{2}^{2}+x_{3}^{2} / a_{3}^{2}-1\right)
$$

Gradient

Example Kepler's problem

$$
\begin{aligned}
& \left(-x_{2} x_{3}+2 y x_{1} / a_{1}^{2}=0\right) \times x_{1} \\
& \left(-x_{1} x_{3}+2 y x_{2} / a_{2}^{2}=0\right) \times x_{2} \\
& \left(-x_{2} x_{1}+2 y x_{3} / a_{3}^{2}=0\right) \times x_{3}
\end{aligned}
$$

then sum the 3 equations:
then find x^{*}

Exemple Kepler's problem

$$
\begin{array}{rl}
-3 x_{1} x_{2} x_{3}+2 & y(\underbrace{\left.x_{1}^{2} / a_{1}^{2}+x_{2}^{2} / a_{2}^{2}+x_{3}^{2} / a_{3}^{2}\right)=0}_{=1} \\
& -x_{2} x_{3}+2 y x_{1} / a_{1}^{2}=0 \\
& -x_{1} x_{3}+2 y x_{2} / a_{2}^{2}=0 \\
& -x_{2} x_{1}+2 y x_{3} / a_{3}^{2}=0
\end{array}
$$

We multiply each equation by the corresponding x_{i} component

$$
\begin{aligned}
& -x_{2} x_{3} x_{1}+2 y x_{1}^{2} / a_{1}^{2}=0 \\
& -x_{1} x_{3} x_{2}+2 y x_{2}^{2} / a_{2}^{2}=0 \\
& -x_{2} x_{1} x_{3}+2 y x_{3}^{2} / a_{3}^{2}=0
\end{aligned}
$$

Then sum $3 \prod x_{i}+2 y=0$ from which $x_{2} x_{3}=2 y /\left(3 x_{1}^{\prime}\right)$ Then inserting in the first equation leads to

$$
-2 y /\left(3 x_{1}\right)+2 y x_{1} / a_{1}^{2}=2 y\left(x_{1} / a_{1}^{2}-1 /\left(3 x_{1}\right)\right)=0
$$

Exemple Kepler’s problem

$x_{1}=0$ is impossible (or $\prod x_{i}=0$ therefore $3 x_{1}^{2}=a_{1}^{2}$. We obtain similarly

$$
x_{i}=\frac{a_{i}}{\sqrt{3}}, \quad i=1, \ldots 3
$$

Finally we get

$$
\begin{gathered}
\mathrm{Vol}=8 \prod x_{i}=8 \frac{\prod Q_{i}}{3 \sqrt{3}}, \quad y=\frac{3 \prod x_{i}}{2}=\frac{\prod a_{i}}{2 \sqrt{3}} \\
y=\frac{3}{2} \frac{\prod a_{i}}{(\sqrt{3})^{3}}=\frac{\prod a_{i}}{2 \sqrt{3}}
\end{gathered}
$$

Exemple

Let the function

$$
\begin{aligned}
f(x)= & f(0)+2 \nabla f(0), x\rangle+\frac{1}{2}\langle H P(0) x, x\rangle \\
& \text { dequee } 2 \Rightarrow f(x)=\frac{1}{2}\left\langle A x_{1} x\right\rangle+\langle b x\rangle+c \\
f(x)= & 2 x_{1}^{2}+3 x_{2}^{2}+2 x_{1} x_{2} .
\end{aligned}
$$

and domain $K=\left\{x_{1}^{2}+4 x_{2}^{2} \leq 1\right.$ and $\left.x_{1}+x_{2} \geq 1\right\}=D_{a}$ Seek $\inf _{x \in K} f(x)$

1. Show that f has a global minimum over \mathbb{R}^{2} and calculate it
2. Show that K is nonempty convex.
3. Draw K in solid lines and isovalues of $f(x)$ in dotted lines
4. Write the Lagrangian for the problem (P).
5. Write the 1st order optimality conditions (or KKT conditions).
6. Use the drawing and the result of question 1 to decide which of the two constraints will be active at least.
7. Calculate x^{\star} and the associated Lagrange multipliers.

Example

1. Compute $\nabla f(x)=\left(4 x_{1}+2 x_{2}, 2 x_{1}+6 x_{2}\right)^{T}$ and $H f(x)=\left(\begin{array}{ll}4 & 2 \\ 2 & 6\end{array}\right)$. The Hessian eigenvalues are $(5 \pm \sqrt{5}) / 2$. Donc

$$
f(x)=f(0)+\langle\nabla f(0), x\rangle+\frac{1}{2}\langle H f(0) x, x\rangle
$$

is a quadratic form with a symmetric positive definite matrix, so the minimum 0 is reached in $x=(0,0)$ and unique.

Example

1. On considère $K=\left\{x_{1}^{2}+4 x_{2}^{2} \leq 1\right.$ et $\left.x_{1}+x_{2} \geq 1\right\}$. Le point $(1,0) \in K \neq \emptyset$ L'ensemble $\left\{x_{1}^{2}+4 x_{2}^{2} \leq 1\right\}$ est l'ellipse de demi grand axe $x_{1} \in[-1,1], x_{2}=0$ et de demi petit axe $x_{1}=0, x_{2} \in[-1 / 2,1 / 2]$. Il est donc convexe. Le demi plan $\left\{x_{1}+x_{2} \geq 1\right\}$ est lui aussi convexe. L'intersection non vide de 2 convexes est convexe.

Exemple

Exemple

1. On applique la méthode des multiplicateurs de Lagrange:

$$
\ell(x, y)=f(x)+y_{1}\left(x_{1}^{2}+4 x_{2}^{2}-1\right)+y_{2}\left(1-x_{1}-x_{2}\right)
$$

Exemple

1. si $\left(x_{1}^{\star}, x_{2}^{\star}\right)$ minimise f on K il existe $y_{1} \geq 0$ et $y_{2} \geq 0$ tels que

$$
\begin{aligned}
\nabla_{x} \ell\left(x^{\star}, y^{\star}\right) & =\binom{4 x_{1}^{\star}+2 x_{2}^{\star}+2 y_{1}^{\star} x_{1}^{\star}-y_{2}^{\star}}{2 x_{1}^{\star}+6 x_{2}^{\star}+8 y_{1}^{\star} x_{2}^{\star}-y_{2}^{\star}}=0_{\mathbb{R}^{2}}, \\
y_{1}^{\star}\left(\left(x_{1}^{\star}\right)^{2}+4\left(x_{2}^{\star}\right)^{2}-1\right) & =0, \\
y_{2}^{\star}\left(1-x_{1}^{\star}-x_{2}^{\star}\right) & =0
\end{aligned}
$$

Exemple

Comme le minimum global de $f(x)$ n'appartient pas à K, l'une des deux contraintes au moins est forcément active. Vu la convexité de f on prévoit que le minimum sera atteint sur le segment $\left\{x_{1}+x_{2}=1\right\} \cap K$ et le maximum sur l'arc $\left\{x_{1}^{2}+4 x_{2}^{2}=1\right\} \cap K$.
Pour le minimum on cherche donc $x, y_{2}>0$ tels que

$$
\begin{aligned}
4 x_{1}^{\star}+2 x_{2}^{\star} & =y_{1}^{\star} \\
2 x_{1}^{\star}+6 x_{2}^{\star} & =y_{2}^{\star} \\
x_{1}^{\star 2}+4 x_{2}^{\star 2}<1 & \\
x_{1}^{\star}+x_{2}^{\star} & =1
\end{aligned}
$$

ce qui conduit à $x_{1}^{\star}=2 / 3, x_{2}^{\star}=1 / 3, y_{2}^{\star}=10 / 3, y_{1}^{\star}=0$ et $f\left(x^{\star}\right)=5 / 3$.

Algorithms for constrained optimization

$$
\left\{\begin{array}{lc}
\inf & f(x) \\
\text { s.c. } & \left.c^{E} x\right)=0 \\
\text { s.c. } & c^{\prime}(x) \leq 0 \\
& x \in \mathbb{R}^{n}
\end{array}\right.
$$

with

$$
\begin{array}{rll}
f & : & \mathbb{R}^{n} \longrightarrow \mathbb{R} \\
c^{E} & : & \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m} \\
c^{\prime} & : & \mathbb{R}^{n} \longrightarrow \mathbb{R}^{p} \\
f & c & \text { smooth. }
\end{array}
$$

- Change of unknowns

Algorithms for constrained optimization best ever method: use the python Scipy. optimize

$$
\left\{\begin{array}{lc}
\inf & f(x) \\
\text { s.c. } & \left.c^{E} x\right)=0 \\
\text { s.c. } & c^{\prime}(x) \leq 0 \\
& x \in \mathbb{R}^{n}
\end{array}\right.
$$

with

$$
\begin{array}{rll}
f & : & \mathbb{R}^{n} \longrightarrow \mathbb{R} \\
c^{E} & : & \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m} \\
c^{\prime} & : & \mathbb{R}^{n} \longrightarrow \mathbb{R}^{p} \\
f & c & \text { smooth. }
\end{array}
$$

- Change of unknowns
- Projection

Algorithms for constrained optimization

$$
\left\{\begin{array}{lc}
\inf & f(x) \\
\text { s.c. } & \left.c^{E} x\right)=0 \\
\text { s.c. } & c^{\prime}(x) \leq 0 \\
& x \in \mathbb{R}^{n}
\end{array}\right.
$$

with

$$
\begin{array}{rll}
f & : & \mathbb{R}^{n} \longrightarrow \mathbb{R} \\
c^{E} & : & \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}, \\
c^{\prime} & : & \mathbb{R}^{n} \longrightarrow \mathbb{R}^{p}, \\
f & c & \text { smooth. }
\end{array}
$$

- Change of unknowns
- Projection
- Penalisation

Algorithms for constrained optimization

$$
\left\{\begin{array}{lc}
\inf & f(x) \\
\text { s.c. } & \left.c^{E} x\right)=0 \\
\text { s.c. } & c^{\prime}(x) \leq 0 \\
& x \in \mathbb{R}^{n}
\end{array}\right.
$$

with

$$
\begin{array}{rll}
f & : & \mathbb{R}^{n} \longrightarrow \mathbb{R} \\
c^{E} & : & \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m} \\
c^{\prime} & : & \mathbb{R}^{n} \longrightarrow \mathbb{R}^{p}
\end{array}
$$

- Projection
- Penalisation
- Methods using Lagrange multipliers

Change of unknowns

$$
\operatorname{ing}_{x_{1}^{2}+x_{2}^{4}=1} x_{1}^{4}+x_{2}^{4} \Rightarrow\left(\begin{array}{l}
x_{1}=\cos \theta \\
x_{2}=\sin \theta
\end{array}\right.
$$

diffeomorphism $\varphi: \mathbb{R}^{n} \rightarrow K \subset \mathbb{R}^{n}$
Examples:

- $K=(\mathbb{R}+)^{n} \longrightarrow$ set $x=y^{2}$ and optimize without constraints with respect to y.

$$
\begin{aligned}
& \varphi:\left(\mathbb{R}^{*}\right)^{n} \rightarrow\left(\mathbb{R}^{+*}\right)^{n}, x_{i}=\varphi_{i}(y)=y_{i}^{2} \\
& i_{x \geqslant 0} f(x) \\
& \left.\tilde{f}(y)=f\binom{y_{1}^{2}}{\dot{y}_{n}^{2}}\right) \inf _{\mathbb{R}^{N}} \tilde{f}(y) \\
& x_{i}^{*}=y_{i}^{* 2}
\end{aligned}
$$

Change of unknowns

$$
\begin{aligned}
& \tilde{f}\left(\theta^{*}\right)=\inf _{\mathbb{R}^{n}} \tilde{f}(\theta) \\
& x_{i}^{*}=\frac{a_{i}+b_{i}}{2}+\frac{b_{i}-a_{i}}{2} \operatorname{Cos} \theta_{i}^{*}
\end{aligned}
$$

diffeomorphism $\varphi: \mathbb{R}^{n} \rightarrow K \subset \mathbb{R}^{n}$
Examples:

- $K=(\mathbb{R}+)^{n} \longrightarrow$ set $x=y^{2}$ and optimize without constraints with respect to y.

$$
\varphi:\left(\mathbb{R}^{*}\right)^{n} \rightarrow\left(\mathbb{R}^{+*}\right)^{n}, x_{i}=\varphi_{i}(y)=y_{i}^{2}
$$

- $K=\prod_{i=1, \ldots, n}\left[a_{i}, b_{i}\right] \longrightarrow \operatorname{set} x_{i}=\frac{a_{i}+b_{i}}{2}+\frac{b_{i}-a_{i}}{2} \cos \theta_{i}$ and optimize without constraints

$$
\varphi: \mathbb{R}^{n} \rightarrow K, x_{i}=\varphi_{i}\left(\theta_{i}\right)
$$

where

$$
\tilde{f}(\theta)=f\left(\begin{array}{cc}
\frac{a_{1}+b_{2}+}{2}+ & \left(b_{2} a_{1}\right) \\
\vdots & \cos \theta_{1} \\
\frac{a_{n}+b_{n}}{2}+\left(b_{n}-a_{1}\right) \\
\cos \theta_{n}
\end{array}\right)
$$

Consequence of the change of unknowns on the calculation of the gradient

$$
\begin{array}{ll}
\text { if you know } \nabla f(x) \\
\tilde{x}=\varphi(y) & \nabla f(y) \\
& \tilde{f}(y)=f(\varphi(y)) \\
\nabla \tilde{f}(y) & =J \varphi(y) \nabla f(\varphi(y))
\end{array}
$$

φ diffeomorphism $\Rightarrow J \varphi$ defined on $\varphi^{-1}(\stackrel{\circ}{K})$

Consequence of the change of unknowns on the calculation of the gradient

[^0]
Consequence of the change of unknowns on the calculation of the gradient

[^1] matrix of φ

Example of change of unknowns

Example $\varphi:\left(\mathbb{R}^{*}\right)^{n} \rightarrow\left(\mathbb{R}^{+*}\right)^{n}, x_{i}=\varphi_{i}(y)=y_{i}^{2}$

Example of change of unknowns

Example $\varphi:\left(\mathbb{R}^{*}\right)^{n} \rightarrow\left(\mathbb{R}^{+*}\right)^{n}, x_{i}=\varphi_{i}(y)=y_{i}^{2}$
$J(y)=\left(\begin{array}{cccc}2 y_{1} y_{1} & 0 & \cdots & 0 \\ 0 & 2 y_{2} & \cdots & 0 \\ \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 2 y_{n}\end{array}\right)=\left(\begin{array}{cccc}2 \sqrt{x_{1}} & 0 & \cdots & 0 \\ 0 & 2 \sqrt{x_{2}} & \cdots & 0 \\ \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 2 \sqrt{x_{n}}\end{array}\right)$,

Example of change of unknowns

Example $\varphi:\left(\mathbb{R}^{*}\right)^{n} \rightarrow\left(\mathbb{R}^{+*}\right)^{n}, x_{i}=\varphi_{i}(y)=y_{i}^{2}$

$$
J(y)=\left(\begin{array}{cccc}
2 y_{1} & 0 & \cdots & 0 \\
0 & 2 y_{2} & \cdots & 0 \\
\ddots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & 2 y_{n}
\end{array}\right)=\left(\begin{array}{cccc}
2 \sqrt{x_{1}} & 0 & \cdots & 0 \\
0 & 2 \sqrt{x_{2}} & \cdots & 0 \\
\ddots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & 2 \sqrt{x_{n}}
\end{array}\right),
$$

$$
\begin{aligned}
\tilde{f}(y) & =f\left(y_{1}^{2}, \ldots, y_{n}^{2}\right), \quad \nabla_{y} \tilde{f}(y)=J(y) \nabla f(x) \\
\frac{\partial \tilde{f}(y)}{\partial y_{i}} & =2 y_{i} \frac{\partial f}{\partial x_{i}}\left(y_{1}^{2}, \ldots, y_{n}^{2}\right)
\end{aligned}
$$

Projection and projected gradient methods
loop of gradient descut

$$
\begin{aligned}
& x_{k+1}^{*}=x_{k}-\alpha_{k} \nabla f\left(x_{k}\right) \\
& x_{k+1}=\mathbb{P}_{k}\left(x_{k+1}^{*}\right) \text { pajetion of } x_{k+1}^{*} \text { on } k
\end{aligned}
$$

Inequality constraints \Leftrightarrow Belong to a non empty closed convex set $K \subset \mathbb{R}^{n}$.
(not necessarily)

$$
\inf _{x \in K} f(x)
$$

Projection and projected gradient methods

Inequality constraints \Leftrightarrow Belong to a non empty closed convex set $K \subset \mathbb{R}^{n}$.

$$
\inf _{x \in K} f(x)
$$

Theorem

Necessary local optimality condition Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ a differentiable function and K a convex non empty subset of \mathbb{R}^{n}. Let x^{\star} a local minimizer of f in K then

$$
\left\langle\nabla f\left(x^{\star}\right), x-x^{\star}\right\rangle \geq 0, \forall x \in K
$$

If moreover f is convex the condition becomes neesbary, ie any point x^{\star} satisfying it is a global minimum of f on K.

Countu exeuple K not couver set

$f_{x} \cos { }^{\prime} v$ and shictly conva stalholds $\exists y^{*}$ slution

Definition/proposition of the projection on a convex set orthogonal projection:

$$
f_{x}\left(y^{*}\right)=\operatorname{mof}_{y \in \mathbb{K}} f_{x}(x)=p^{*}
$$

P is petal and uni fe
if K is convex then y^{*} is unique.
Let K a non empty closed convex set in \mathbb{R}^{n}. The projection of a point $x \in \mathbb{R}^{n}$ on K, denoted $P_{K}(x)$, is defined as the unique solution

$$
\begin{aligned}
& \left\|P_{K}(x)-x\right\|^{2}=\mathcal{l i m}_{x \in K}(y) \\
& y x-y \|_{2}^{2} .
\end{aligned}
$$

Why does $P_{k}(x) \exists!$?
for fixed $x \quad f_{x}(y)=\|y-x\|^{2}$ is
\therefore Shit Ply cover $\nabla f_{x}(y)=2(y-x)$

- $Z_{x}(y)$ con are $\Rightarrow \exists$ minimum.

Definition/proposition of the projection on a convex set

Let K a non empty closed convex set in \mathbb{R}^{n}. The projection of a point $x \in \mathbb{R}^{n}$ on K, denoted $P_{K}(x)$, is defined as the unique solution
$f_{x}(y)=\|y-x\|^{2} \quad \inf _{y \in K}\|x-y\|_{2}^{2}=\operatorname{uff}_{y \in K} f_{x}(y)$
Furthermore $P_{K}(x)$ is the only point in K satisfying

$$
\left\langle P_{K}(x)-x, y-P_{K}(x)\right\rangle \geq 0, \quad \forall y \in K
$$

Proof

- Existence of $P_{K}(x)$ as minimum on a closed set of $f(y)=\|x-y\|^{2}$ coercive (Theorem 1.1)

Proof

- Existence of $P_{K}(x)$ as minimum on a closed set of $f(y)=\|x-y\|^{2}$ coercive (Theorem 1.1)
- Unicity : $f(y)$ is convex (Hessien $=21_{\mathbb{R}^{n}}$) therefore unique minimum

Proof

- Existence of $P_{K}(x)$ as minimum on a closed set of $f(y)=\|x-y\|^{2}$ coercive (Theorem 1.1)
- Unicity : $f(y)$ is convex (Hessien $=21_{\mathbb{R}^{n}}$) therefore unique minimum
- Equivalence between the two properties:
\Rightarrow for $y \in K$ and $\theta \in[0,1], \theta y+(1-\theta) P_{K}(x) \in K$
- Develop $\left\|x-P_{K}(x)\right\|^{2} \leq\left\|\theta y+(1-\theta) P_{K}(x)-x\right\|^{2}$
- Simplify θ
- Do $\theta=0$

Proof

- Existence of $P_{K}(x)$ as minimum on a closed set of $f(y)=\|x-y\|^{2}$ coercive (Theorem 1.1)
- Unicity : $f(y)$ is convex (Hessien $=21_{\mathbb{R}^{n}}$) therefore unique minimum
- Equivalence between the two properties:
\Rightarrow for $y \in K$ and $\theta \in[0,1], \theta y+(1-\theta) P_{K}(x) \in K$
- Develop $\left\|x-P_{K}(x)\right\|^{2} \leq\left\|\theta y+(1-\theta) P_{K}(x)-x\right\|^{2}$
- Simplify θ
- Do $\theta=0$
\Leftarrow for $y \in K$ develop

$$
\begin{aligned}
\|x-y\|^{2} & =\left\|x-P_{K}(x)+P_{K}(x)-y\right\|^{2} \\
& =\left\|x-P_{K}(x)\right\|^{2}+\left\|P_{K}(x)-y\right\|^{2}+2\left\langle x-P_{K}(x), P_{K}(x)-y\right\rangle \\
& \geq\left\|x-P_{K}(x)\right\|^{2}
\end{aligned}
$$

Particular cases of projection on a convex.

Orthogonal projection of x on a subset K

$$
P_{K}(x):=\underset{y \in K}{\operatorname{argmin}}\|x-y\| .
$$

Specific cases that can be solved explicitly

Projection on an intersection of half spaces

Supposons que $K=\left\{x \in \mathbb{R}^{n}, x_{i} \geq a_{i}, i \in I, x_{j} \leq b_{j}, j \in J\right\}$ avec $I, J \subset\{1, \ldots, n\}$. On a alors

$$
P_{K}(x)_{i}=\left\{\begin{array}{l}
\max \left(a_{i}, x_{i}\right), \text { pour } i \in \backslash J \\
\min \left(b_{i}, x_{i}\right), \text { pour } i \in J \backslash I \\
\min \left(b_{i}, \max \left(a_{i}, x_{i}\right)\right), \text { pour } i \in I \cap J
\end{array}\right.
$$

Projection on an intersection of half spaces

Supposons que $K=\left\{x \in \mathbb{R}^{n}, x_{i} \geq a_{i}, i \in I, x_{j} \leq b_{j}, j \in J\right\}$ avec $I, J \subset\{1, \ldots, n\}$. On a alors

$$
P_{K}(x)_{i}=\left\{\begin{array}{l}
\max \left(a_{i}, x_{i}\right), \text { pour } i \in \backslash J \\
\min \left(b_{i}, x_{i}\right), \text { pour } i \in J \backslash I \\
\min \left(b_{i}, \max \left(a_{i}, x_{i}\right)\right), \text { pour } i \in I \cap J
\end{array}\right.
$$

Projection on a line (A, \vec{v})

Projection on a line (A, \vec{v})

Euler inequation

Let $f: K \subset E \rightarrow \mathbb{R}$, where K is a convex included in E, a Hilbert space. We suppose that f is differentiable in $x^{\star} \in K$. If x^{\star} is a local minimum of f over K, then x^{\star} satisfies the Euler inequality:

$$
D f\left(x^{\star}\right)\left(y-x^{\star}\right) \geq 0, \forall y \in K
$$

Algorithm of the projected gradient
Data: Function f, convex K, step $\left(\alpha_{k}\right)_{k \geq 0}$, tolerance τ, max number of iterations $k_{\text {max }}$
Result: $\min _{x \in K} f(x)$
Initialisation : choice of $x_{0} \in \mathbb{R}^{n}$
while $\left\|x^{k+1}-x^{k}\right\| \geq \tau$ or $k<k_{\max }$ do Solve $x^{k+1}=P_{K}\left(x^{k}-\alpha_{k} \nabla f\left(x^{k}\right)\right), k \leftarrow k+1$ end $x^{\star}=x_{k}$

Convergence of projected gradient algorithm

Theorem
Let f differentiable sur \mathbb{R}^{n} and $K \in \mathbb{R}^{n}$ closed non empty convex subset. Denote by x_{k} the current solution of the projected gradient algorithm and

$$
d(\alpha)=P_{K}\left(x_{k}-\alpha \nabla f\left(x_{k}\right)\right)-x_{k}
$$

If $d(\alpha) \neq 0$ then $d(\alpha)$ is a descent direction $\forall \alpha>0$

Proof

Let $\alpha>0$ fixed. Suppose : $d(\alpha)=p_{K}\left(x_{k}-\alpha \nabla f\left(x_{k}\right)\right)-x_{k} \neq 0$. $d(\alpha)$ descent direction f in $x_{k} \Leftrightarrow\left\langle\nabla f\left(x_{k}\right), d(\alpha)\right\rangle<0$

Proof

Let $\alpha>0$ fixed. Suppose : $d(\alpha)=p_{k}\left(x_{k}-\alpha \nabla f\left(x_{k}\right)\right)-x_{k} \neq 0$. $d(\alpha)$ descent direction f in $x_{k} \Leftrightarrow\left\langle\nabla f\left(x_{k}\right), d(\alpha)\right\rangle<0$ Indeed $\forall y \in K$,
$\Leftrightarrow\left\langle P_{k}\left(x_{k}-\alpha \nabla f\left(x_{k}\right)\right)-\left(x_{k}-\alpha \nabla f\left(x_{k}\right)\right), y-P_{K}\left(x_{k}-\alpha \nabla f\left(x_{k}\right)\right)\right\rangle \geq 0$
Therefore for all $\left.y \in K\left\langle d(\alpha)+\alpha \nabla f\left(x_{k}\right)\right), y-x_{k}-d(\alpha)\right\rangle \geq 0$

Proof

Let $\alpha>0$ fixed. Suppose : $d(\alpha)=p_{K}\left(x_{k}-\alpha \nabla f\left(x_{k}\right)\right)-x_{k} \neq 0$. $d(\alpha)$ descent direction f in $x_{k} \Leftrightarrow\left\langle\nabla f\left(x_{k}\right), d(\alpha)\right\rangle<0$ Indeed $\forall y \in K$,
$\Leftrightarrow\left\langle P_{k}\left(x_{k}-\alpha \nabla f\left(x_{k}\right)\right)-\left(x_{k}-\alpha \nabla f\left(x_{k}\right)\right), y-P_{K}\left(x_{k}-\alpha \nabla f\left(x_{k}\right)\right)\right\rangle \geq 0$
Therefore for all $\left.y \in K\left\langle d(\alpha)+\alpha \nabla f\left(x_{k}\right)\right), y-x_{k}-d(\alpha)\right\rangle \geq 0$ Since $x_{k} \in K$ choose $y=x_{k}$ on a
$\left\langle d(\alpha)+\alpha \nabla f\left(x_{k}\right), d(\alpha)\right\rangle \leq 0$ or $\alpha\left\langle\nabla f\left(x_{k}\right), d(\alpha)\right\rangle \leq-\|d(\alpha)\|^{2}<0$

Convergence of projected gradient algorithm

Theorem

If f is differentiable, α-elliptic and its gradient is C-Lipschitzien, the projected gradient algorithm converges towards x^{\star} quand $k \rightarrow \infty$ for $\left(\alpha_{k}\right)_{k \geq 0}$ sufficiently small: $\alpha_{k} \leq \frac{2 \alpha}{C^{2}}$ où α and C are two constants such that

$$
\begin{aligned}
(\nabla f(x)-\nabla f(y), x-y) & \geq \alpha\|x-y\|^{2}, \quad \forall x, y \in \mathbb{R}^{n}, \\
\|\nabla f(x)-\nabla f(y)\| & \leq C\|x-y\|, \quad \forall x, y \in \mathbb{R}^{n} .
\end{aligned}
$$

Proof

Compose two contracting applications

- $x \rightarrow x-\alpha \nabla f(x)$ with conditions on α_{k} (See unconstrained gradient convergence theorem)

Proof

Compose two contracting applications

- $x \rightarrow x-\alpha \nabla f(x)$ with conditions on α_{k} (See unconstrained gradient convergence theorem)
- $x \rightarrow P_{K}(x)$. indeed

$$
\begin{aligned}
\|x-y\|^{2}= & \left\|x-y-\left(P_{K}(x)-P_{K}(y)\right)+\left(P_{K}(x)-P_{K}(y)\right)\right\|^{2} \\
= & \left\|x-y-\left(P_{K}(x)-P_{K}(y)\right)\right\|^{2}+ \\
& \left\langle x-y-\left(P_{K}(x)-P_{K}(y)\right), P_{K}(x)-P_{K}(y)\right\rangle+\left\|P_{K}(x)-P_{K}(y)\right\|^{2} \\
= & \left\|x-y-\left(P_{K}(x)-P_{K}(y)\right)\right\|^{2} \\
& +\left\langle x-P_{K}(x), P_{K}(x)-P_{K}(y)\right\rangle \\
& \left.+\left\langle-y+P_{K}(y)\right), P_{K}(x)-P_{K}(y)\right\rangle+\left\|P_{K}(x)-P_{K}(y)\right\|^{2}
\end{aligned}
$$

$$
\text { but }\left\langle x-P_{K}(x), P_{K}(x)-P_{K}(y)\right\rangle \geq 0 \operatorname{car} P_{K}(y) \in K
$$

Therefore

$$
\begin{aligned}
\|x-y\|^{2} & \geq\left\|x-y-\left(P_{K}(x)-P_{K}(y)\right)\right\|^{2}+\left\|P_{K}(x)-P_{K}(y)\right\|^{2} \\
& \geq\left\|P_{K}(x)-P_{K}(y)\right\|^{2}
\end{aligned}
$$

[^0]: φ diffeomorphism $\Rightarrow J \varphi$ defined on $\varphi^{-1}(\mathbb{K})$
 $f(y)=f \circ \varphi(y)=f(x)$

[^1]: φ diffeomorphism $\Rightarrow J \varphi$ defined on $\varphi^{-1}\left({ }_{\circ}\right)$
 $\tilde{f}(y)=f \circ \varphi(y)=f(x) \nabla_{y} \tilde{f}(y)=J(y) \nabla_{x} f(x)$ avec $J(x)$ jacobian

