Example 2 Altcrnahur method to minimize $D_{a}(x)=\left\{\begin{array}{l}3 x_{1}^{2}+5 x_{2}^{2} \\ \left.x_{1}+x_{2}=1\right\}\end{array}\right.$

$$
y^{\forall}=-\frac{\partial p(0)}{\partial \varepsilon}(\text { slide 245) }
$$

$$
\begin{aligned}
C(x) & =x_{1}+x_{2}-1 \\
c(x) & =0 \\
c(x) & =\varepsilon>0 \\
c(x) & =\varepsilon p^{\prime \prime}(\varepsilon) \\
y^{*} & =\frac{-51}{22}
\end{aligned}
$$

linear

- Solve the system of 3 equations to find x^{\star}, y
- Other method?

Optimality conditions for the optimization with constraints of inequality

$$
J=\binom{J C^{E}\left(x^{*}\right)^{*}}{\widetilde{J}^{I} I^{*}\left(x^{*}\right)}
$$

$$
V^{N} C^{T}\left(x^{*}\right)=\text { the rows of } J C^{I}\left(x^{*}\right)
$$

$$
\text { when } C_{k}^{I}\left(x^{*}\right)=0
$$

when e $C_{k}^{T}\left(x^{x}\right)=0$
x^{\star} is a local minimizer of f verifying the constraints of inequality $c_{l}(x) \leq 0$ and the constraints of equality $c_{E}\left(x^{\star}\right)=0$. If the constraints are qualified, there exists a vector $y^{\star} \in \mathbb{R}^{m}$ and a vector $z^{\star} \in \mathbb{R}^{+\rho}$ of Lagrange multipliers such as

$$
\begin{aligned}
c^{E}\left(x^{\star}\right)=0, c^{\prime}\left(x^{\star}\right) & \leq 0 \text { primal feasibility } \\
\forall x \in \mathbb{R}^{n} \quad \ell\left(x^{\star}, y^{\star}, z^{\star}\right) & \leq \ell\left(x, y^{\star}, z^{\star}\right) \text { dual feasibility } \\
z^{\star} & \geq 0 \text { dual feasibility }
\end{aligned}
$$

for $i=1, \ldots, p, \underbrace{c_{i}^{\prime}\left(x^{*}\right) z_{i}^{*}=0 \text { complementary relaxation }}_{\text {Conses form } p^{*}=d^{*}}$

Conditions of complementary relaxation

$$
\begin{aligned}
& g\left(y^{*}, z^{*}\right) P^{*}=\operatorname{cin}^{*} f(x)=f\left(x^{*}\right) \\
& \mid f^{*}=\operatorname{sip}^{\prime}(y, z)=\sup _{y=1} f(x)+\left\langle y, c^{E}(x)\right\rangle+\left\langle z, c^{I}(x)\right\rangle
\end{aligned}
$$

每 $p^{\star}=d^{\star}$ because constraints are qualified

$$
\begin{aligned}
p^{\star}=d^{\star} & =\inf _{x} f(x)+\left\langle y^{\star}, C^{E}(x)\right\rangle+\left\langle z^{\star}, C^{\prime}(x)\right\rangle \\
f\left(x^{\star}\right) & =f\left(x^{\star}\right)+\underbrace{\left\langle y^{\star}, C_{11}^{E}\left(x^{\star}\right)^{*}\right.}_{=0}\rangle+\left\langle z^{\star}, z^{\star}\right) \\
\left.f\left(x^{\star}\right)\right\rangle & \leq f\left(x^{\star}\right)
\end{aligned}
$$

then

$$
\left\langle z^{\star}, C^{\prime}\left(x^{\star}\right)\right\rangle=0 \Rightarrow z_{j}^{\star} C^{\prime}\left(x^{\star}\right)_{j}=0 \forall j=1, \ldots, p
$$

$$
\sum_{k=1}^{\infty} z_{k}^{*} c_{k}^{T}\left(x^{*}\right)=0
$$

with $Z_{k}^{*} \geqslant 0$ and $C_{k}^{T}\left(x^{*}\right) \subseteq 0$

First order optimality conditions for the optimization with constraints of inequality

Theorem

Karush-Kuhn-Tucker (KKT) conditions
Let f, c^{\prime} and c^{E} in C^{1}, and x^{\star} a local minimizer of f satisfying the inequality constraints $c^{\prime}(x) \leq 0$ and equality constraints $c^{E}\left(x^{\star}\right)=0$. If the constraints are qualified, there exists $y^{\star} \in \mathbb{R}^{m}$ and $z^{\star} \in \mathbb{R}^{+P}$ Lagrange multipliers such that

KKT Conditions deduced from Lagrange multipliers theorem

Replace the original inegality constrained problem by

The lagrangian of the modified problem is

$$
L(x, t, y, z)=F(x, t)+\sum_{i=1}^{m} y_{i} c_{i}^{E}(x)+\sum_{j=1}^{p} z_{j}\left(c_{j}^{\prime}(x)+t_{j}^{2}\right)
$$

Lagrange multipliers theorem provides

$$
\nabla_{x, t} F(x, t)+\sum_{i=1}^{m} y_{i} \nabla_{x, t} c_{i}^{E}(x)+\sum_{j=1}^{p} z_{j} \nabla_{x, t}\left(c_{j}^{\prime}(x)+t_{j}^{2}\right)=0
$$

KKT proof... $\left.\ell(x, t, y, 3)=F(x, t)+\sum y_{i} c^{E}(x)+\sum z_{j}\left(c_{j}^{T} / x\right)+t_{j}^{2}\right)$
$\partial / \partial x_{i}$
$\nabla_{x} f(x)+\sum_{i=1}^{m} y_{i} \nabla_{x} c_{i}^{E}(x)+\sum_{j=1}^{p} z_{j} \nabla_{x}\left(c_{j}^{\prime}(x)=0 \quad n\right.$ equations
Relaxation $t_{j}=0 \Leftrightarrow C_{j}^{I}(x)=0 \Longleftrightarrow \quad 2 z_{j} t_{j}=0, j=1, \ldots, p$
Condition $z_{j} \geq 0$ To find this condition, we apply the and order optimality condition on the Lagrangian of $F(x, t)$:

Example of KKT application

$$
\ell(x, z)=\|x\|^{2}+z\left(x_{1}+x_{2}-1\right)
$$

We look at the quadratic minimization problem

$$
\inf _{\substack{x_{1}+x_{2}-1 \leq 0}} x_{1}^{2}+x_{2}^{2}
$$

Trivial solution: $(0,0)$ checks the inequality constraint therefore the constraint is inactive in x^{\star}, the solution of the problem is the solution of the unconstrained problem, i.e. $(0,0)$. KKT check: We seek (x^{\star}, z^{\star}) with $z^{\star} \geq 0$ s. t.

$$
\begin{aligned}
& \nabla_{x} l\left(*^{*}, z^{*}\right)=\binom{2 x_{1}^{\star}}{2 x_{2}^{\star}}+z^{\star}\binom{1}{1} \\
&=0 \\
& z^{\star}\left(x_{1}^{\star}+x_{2}^{\star}-1\right)=0 . \text { Relarcation }
\end{aligned}
$$

Example of KKT application

$$
\begin{aligned}
& 2 x^{*}+z^{*}(1)=0 \\
& \left(x_{1}+x_{2}^{*}-1\right) z^{*}=0 \\
& \left.\pi-z^{*}-1\right) z=0
\end{aligned}
$$

From the two first equalities $x_{1}^{\star}=x_{2}^{\star}=-z^{\star} / 2$
replace in the third one leads to either $z^{\star}=0$ then $x_{1}^{\star}=x_{2}^{\star}=0$ either $x_{1}^{\star}=x_{2}^{\star}=1 / 2$ then $z^{\star}=-1<0$ impossible.

Modified example

$2 x+z(1)=0 \Rightarrow x_{1}=x_{2}=-z / 2$
$z\left(x_{1}+x_{2}+1\right)=0$
$z(-z+1)=0$
$x^{*}=\left(\frac{-1}{2}, \frac{-1}{2}\right)$ with $\inf _{3^{*}=1} x_{x_{1}+x_{2}+1 \leq 0}^{2}+x_{2}^{2}$.

$(0,0)$ does not satisfy the constraint therefore the constraint will be active in x^{\star}.
The third KKT condition is now $z^{\star}\left(x_{1}^{\star}+x_{2}^{\star}+1\right)=0 \Rightarrow$ either $z^{\star}=0$ then $x_{1}^{\star}=x_{2}^{\star}=0$, does not satisfy the constraint either $x_{1}^{\star}=x_{2}^{\star}=-1 / 2$ then $z^{\star}=1$, correct solution.
Verification : change of variable $x_{2}=-1-x_{1}$ in the function : $\inf _{x_{1}} x_{1}^{2}+\left(1+x_{1}\right)^{2}$ is attained at $x_{1}=-1 / 2$.

Exempla Kepler's problem

$$
\begin{aligned}
& V(x)=x_{1} x_{2} x_{3} \\
& f(x)=-x_{1} x_{2} x_{3} \\
& J C(x)=2\left(\frac{x_{1}}{a^{2}}, \frac{x_{2}}{a_{2}^{2}}, \frac{x_{3}}{a_{3}^{2}} x^{4} \neq 0 \Rightarrow \operatorname{NC}\left(x^{*}\right)=1\right.
\end{aligned}
$$

Find the parallelepiped of maximum volume inscribed in the ellipsoid

$$
\begin{gathered}
D_{2}=\left\{x_{1}^{2} / a_{1}^{2}+x_{2}^{2} / a_{2}^{2}+x_{3}^{2} / a_{3}^{2} \leq 1\right\} \\
\mathcal{E}=\left\{x \in \mathbb{R}^{3}, x_{1}^{2} / a_{1}^{2}+x_{2}^{2} / a_{2}^{2}+x_{3}^{2} / a_{3}^{2}=1\right\}
\end{gathered}
$$

$$
\begin{aligned}
& 1 \\
& c(x)=x_{1}^{2} x_{1}^{2}+x_{3}^{2}+2 / a_{2}^{2}+x_{3}^{2} / a_{3}^{2}-1 \\
& c(1)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Write the problem as a canonical optimisation problem } \\
& l(x, y)=-x_{1} x_{2} x_{3}+y\left(x_{1}^{2} / a_{1}^{2}+x_{2}^{2} / a_{2}^{2}+x_{3}^{2} / a_{3}^{2}-1\right) \\
& \nabla_{x} l(x, y)=\left(\begin{array}{l}
-x_{2} x_{3} \\
-x_{1} x_{3} \\
-x_{1} x_{2}
\end{array}\right)+2 y\left(\begin{array}{l}
x_{1} / a_{1}^{2} \\
x_{2} / a_{2}^{2} \\
x_{3} / a_{3}^{2}
\end{array}\right)=0
\end{aligned}
$$

Example Kepler’s problem

Find the parallelepiped of maximum volume inscribed in the ellipsoid

$$
\mathcal{E}=\left\{x \in \mathbb{R}^{3}, x_{1}{ }^{2} / a_{1}^{2}+x_{2}^{2} / a_{2}^{2}+x_{3}^{2} / a_{3}^{2}=1\right\}
$$

Write the problem as a canonical optimisation problem

$$
\inf _{x_{1}{ }^{2} / a_{1}^{2}+x_{2}^{2} / a_{2}^{2}+x_{3}^{2} / a_{3}^{2}=1} f(x), \quad f(x)=-\prod_{i=1}^{3} x_{i}
$$

$$
\begin{array}{r}
\left\{\begin{array}{l}
x_{1} \geq 0 \\
x_{2} \geq 0 \\
x_{3} \geq 0
\end{array}\right\} \text { these constants one } \\
\text { ne cessanby inactive at } x^{*} \\
\text { be cause otheurix } \\
\qquad\left(x^{*}\right)=0
\end{array}
$$

- Can we apply KKT theorem?
- Which constraints are active ?
- Lagrangian ?

Exemple Kepler’s problem

$x_{1}=0$ or $x_{2}=0$ or $x_{3}=0 \Rightarrow f(x)=0$! inequality constraints are inactive

$$
\ell(x, y)=-\prod_{i=1}^{3} x_{i}+y\left(x_{1}^{2} / a_{1}^{2}+x_{2}^{2} / a_{2}^{2}+x_{3}^{2} / a_{3}^{2}-1\right)
$$

Gradient

Example Kepler's problem

$$
\begin{aligned}
& \left(-x_{2} x_{3}+2 y x_{1} / a_{1}^{2}=0\right) \times x_{1} \\
& \left(-x_{1} x_{3}+2 y x_{2} / a_{2}^{2}=0\right) \times x_{2} \\
& \left(-x_{2} x_{1}+2 y x_{3} / a_{3}^{2}=0\right) \times x_{3}
\end{aligned}
$$

then sum the 3 equations:
then find x^{*}

