


Optimality conditions for the optimization with
constraints of inequality o,

= [ TCE( 7C I(x" - Hee couos act (>¢)
d ( f%l((zg \l\’\-‘/\k C,'E('z*;é; 0O
Theorem Romde. T 2 vaivnsd (= q\LoJmus)

x* is a local minimizer of f verifying the constraints of inequality
c/(x) < 0 and the constraints of equality ce(x*) = 0. If the
constraints are qualified, there exists a vector y* € R™ and a
vector z* € RtP of Lagrange multipliers such as

cE(x*) =0,c'(x*)
Vx e R" 4(x*,y*,Z")

*

0 primal feasibility
((x,y*,z*) dual feasibility

Z 0 dual feasibility
| Q?‘ P ) cl(x*)z* 0 complementary relaxation

o Coen %\Q’\M F*:ﬁorﬁ

IV IA A
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Conditions of complementary relaxation

- (=) =
9[3 %] h = Aop %(915) &;P&gx)‘F(g/ k)>+<3,cf(49>
Gp = beesne w"““w ke Mf“’“"

pid= inf () + (.50 + (2, €)= 4% 2)

)< 1) +(( CE) + (2. ') < ()

then =0

(z*, Cl(x *)>_O:>Z*C(x)j_OVj_1 ..... p
E%k h('*“ =0
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First order optimality conditions for the optimization
with constraints of inequality

Theorem

Karush Kuhn- Tucker (KK'T) conditions

Letf, ¢' and c& in C', and x* a local minimizer of f satisfying

the inequality constraints ¢’ (x) < 0 and equality constraints
cE(x*) = 0. If the constraints are qualified, there exists y* € R™

and z* € RTP Lagrange multipliers such that

cE(x*)=0,c'(x*) < 0 primal feasibility D
* ET/ xy,,* IT /%y % Q(;¥§?1‘0
gx* )+ A= (x)y"+A (x7)zr = 0 dual feasibility Z i
z* > 0 dual feasibility
o —= Vi=1,....m c/(x)zf = 0 complementary relaxation
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KKT Conditions deduced from Lagrange multipliers

theorem
‘Replace the original inegality constrain
inf x € R7,t € RPF(x, t) with
FOut) = f(x) bt primaliodasualds

and equality constraints

cE(x)=0pouri=1,....,m
Ii(X)HZ—OM D.

e lagrangian of the modified problem is

Lix,t.y,z) =F xt)+Zy, X)+sz(cj’(x)+tj2)

Lagrange multipliers theorem provides

m p
Vit FOGH + Y YiVaicf (X) + Y ziVau(c/(x) + ) = 0
=1 J=1
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KKT proof... 2ti3:8): Bl + S 66+ 23(Ghl+E)

o)/ oL,

m p
Vxf(x) + ZYIVXC/E(X) T Z Zij(le(X) 0 n eﬂ\’a}\'w

=1 j=1
dedeahonn EérOQDCgfﬁ):o (=) 2zt = 0, j=1,...,p

Condition z; > 0 To find this condition, we apply the 2nd order
optimality condition on the Lagrangian of F(x, t):

(Hxl(x,y,2) 0 \
(221 0 O\
HyiL(x,t,y,z) = 0 0 2z . O
H:I-Z >0 e
?/7') 3&2@_ \ \O .0 22,;))
A"t""'ip -
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Example of KKT application
R, 3): 1= 1(* + 3 Crit2e-1)

We look at the quadratic minimization problem

inf X%+ X5
X1+Xx0—1<0

Trivial solution: (0, 0) checks the inequality constraint therefore
the constraint is inactive in x*, the solution of the problem is the

solution of the unconstrained problem, i.e. (0, 0).
KKT check : We seek (x*, z*) witix zx > O)s. t.

) = (37) (3 - o

2 N\
CZ (XT+x3—1) = (D RaSoncatn o7~

e
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Example of KKT application \’
2 v 97(1)=P (c
2+ *p-1)2 =0 I

C-3-1)3=0°

From the two first equalities x7 = x5 = —z*/2
replace in the third one leads to

either z* = O then x7 = x3 =0

either x; = x3 = 1/2 then z* = —1 < 0 impossible.

262



Modified example {

2% + 3())=0 ®, 2%, = ~ Y. \f
%@4+xz+0;0 —f /ﬁ\\ 5

3 (-3+1) 20 / [ =
1*'-'-(%)7}-)%)&‘ inf x4 x5.

2

,3‘.: A X1+x0+1<0 S(
(0,0) does not satisfy the constraint therefore the constraint will
be active in x*.
The third KKT condition is now z*(x; + x5 +1) =0 =
either z* = 0 then xJ = x5 = 0, does not satisfy the constraint
either x; = x5 = —1/2 then z* = 1, correct solution.
Verification : change of variable x» = —1 — x5 in the function :
infy, X2 + (1 + x1)? is attained at x; = —1/2.
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Exemple Kepler's problem

E)emmn  —(D

(=) = - 242273

3a():2(% , %, %) ='+0 =4J0GY)=
Qz a3
Find the paralleleplped of maximum volume mscrlbed in the

ellipsoid N = g 22/ ,.f)(/a\l +'23/a3 443

£ ={xeR3 x12/a1+x2/a2+x3/a3_1}
Clr)= 2Yaz+m3/a7 "7‘3/0\3"!

Write the problem as a canonic opt|m|sat|on roblem 2
(’1 - ~ ')(1 9‘-’3 %/ﬂ,\
'V‘XQ la') _ %, A A 9\(6 Z/QZ =0
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Exemple Kepler's problem
Find the parallelepiped of maximum volume inscribed in the

ellipsoid
E={xcR3 x42/a + x5 /a5 + x5 /a5 = 1}
Write the problem as a canonical optimisation problem

inf f(x), f(x)= HX/

x12/512+x2/512+x3/av3 — 1
X{ > 0 J
?Xg, >0 M O'HN W X(
TG0
» Can we apply KKT theorem?

» Which constraints are active ?

» Lagrangian ?
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Exemple Kepler's problem

x1 =00rxo =00r x3 =0= f(x) =0 ! inequality constraints
are inactive

3

Ux,y)=—1]x+yx®/a +x5/a + x5/a5 — 1)
=1

Gradient
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Exemple Kepler's problem

( x2x3+2yx1/a1 = 0 ) X Xy
( x1x3+2yx2/32 = O) r Xz
( Xo X1 —|—2yX3/33 0 ) X (3(

Mo S ‘R’ugﬂﬂ‘“}w

£end o
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