
Théorème des extrema liés - Lagrange multipliers

Let f and C in C1, and x? a local minimizer of f satisfying

C(x?) = 0 primal feasability

If the constraints are qualified, there exists a vector of Lagrange
multipliers y? 2 Rm s. t.

rf (x?) +
mX

i=1

y?
i rCi(x?) = 0 dual feasability

I Linear constraints special case
I n = 2, m = 1 special case
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Linear constraints special case

c(x) = (hc1, xi, . . . , hcm, xi)?
(ci)i=1,...,mindependant vectors family in Rn

K = {x , hci , xi = 0, i = 1, . . . , m}

inf
x2K

f (x), inf
↵2Rp

g(↵)

with g(↵) = f

 pX

i=1

↵i ki

!
, (ki)i=1,...,p, basis of K
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Special case n = 2, m = 1

Qualification condition for one single constraint m = 1 :
rxc1(x?) 6= 0, we can suppose @x2c1(x?) 6= 0.
Implicit function theorem : 9V1 ⇥ V2 containing x? and ' unique
and differentiable in x? s. t. 8x1 2 V1 c1([x1,'(x1)]) = 0 and
x?

2 = '(x?
1 ) with

'0(x1) =
�1

@x2c1(x)
@x1c1(x).
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Proof

inf
c1(x)=0

f (x) , inf
x12V1

f̃ (x1), with f̃ (x1) = f ([x1,'(x1)])

First order ptimality conditions for f̃ (without constraints since
V1 is an open set)

f̃ 0(x?
1 ) = 0, @f

@x1
([x?

1 ,'(x?
1 )]) + '0(x?

1 )
@f
@x2

([x?
1 ,'(x?

1 )]) = 0.

y = � @x2 f (x?)

@x2c1(x?)
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Exemple 1

inf
x2

1 +x2
2 =1

x4
1 + x4

2 .

Resolution by changing variables in polar coordinates
Set x1 = cos(✓) x2 = sin(✓), problem (4) becomes
inf✓2[0,2⇡](cos ✓4 + sin ✓4) whose solution is obtained by finding
the zero of the derivative:

4 cos ✓ sin ✓(� cos ✓2 + sin ✓2) = �2 sin(2✓) cos(2✓) = 0,

4 local minima (±
p

2/2, ±
p

2/2), où f (x) = 1/2,
4 local maxima {(1, 0), (0, 1), (�1, 0), (0,�1))}, où f (x) = 1.
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Resolution using Lagrange multipliers

We seek x? 2 R2 and y? 2 R s. t.

(x?
1 )2 + (x?

2 )2 = 1
4(x?

1 )3 + y?2x?
1 = 0

4(x?
2 )3 + y?2x?

2 = 0
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Resolution using Lagrange multipliers

We seek x? 2 R2 and y? 2 R s. t.
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Resolution using Lagrange multipliers

We seek x? 2 R2 and y? 2 R s. t.

(x?
1 )2 + (x?

2 )2 = 1
4(x?

1 )3 + y?2x?
1 = 0

4(x?
2 )3 + y?2x?

2 = 0

x?
1 = 0 y? = �2(x?

1 )2

x?
2 = 0 (x?

1 )2 + (x?
2 )2 6= 1 (x?

1 )2 = 1 et y? = �2
f (x?) = 1

y? = �2(x?
2 )2 (x?

2 )2 = 1 et y? = �2 (x?
1 )2 = (x?

2 )2 = 1/2 et y? = �1,
f (x?) = 1 f (x?) = 1/2
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Exemple 2

Find

inf
C(x)=0

f (x) f (x) = 3x2
1 + 5x2

2 � 3x1x2, C(x) = x1 + x2 � 1

I Lagrangian `(x , y) = 3x2
1 + 5x2

2 � 3x1x2 + y(x1 + x2 � 1)

I Gradient r`(x , y) =

✓
6x1 � 3x2 + y
�3x1 + 10x2 + y

◆

I If f (x?) = inf
C(x)=0

f (x) then 9y? 2 R s.t. r`(x?, y?) = 0

I Plus the primal condition C(x?) = 0
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Exemple 2

I Solve the system of 3 equations to find x?, y

I Other method ?
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Exemple 2

I Solve the system of 3 equations to find x?, y
I Other method ?
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Second order optimality conditions

Let f and c in C2, and x? be a local minimizer of f verifying the
constraints of equality c(x?) = 0. If the constraints are qualified,
there exists a vector of Lagrange multipliers y? 2 Rm such that

hs, H(x?, y?)si � 0 pour tout s 2 N
où

N = {s 2 Rn, A(x?)s = 0}.
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Interpretation of Lagrange multipliers

The Lagrange multiplier yi measures the sensitivity of the
minimum x? with respect to the corresponding constraint.
Initial primal and dual problems
infc(x)=0 f (x) supy g(y)

avec g(y) = infx f (x) + ytc(x)
Perturbated primal and dual problems
infc(x)=" f (x) supy g(y)� "T y
I x is the primal variable, " a parameter
I p?(") the optimal value when " varies
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Global interpretation of Lagrange multipliers

Hyp: strong duality for the undisturbed problem, that is y? t.q.
g(y?) = d? = p?(0)
For the perturbated problem we have

p?(") � max
y

g(y)� "T y

� g(y?)� "T y?

� p?(0)� "T y?

d’où
I if y?

i > 0 and large, p? increases a lot if "i < 0
I if y?

i < 0 and large, p? disminishes a lot if "i > 0
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Local interpretation of Lagrange multipliers

y?
i = �@p?(0)

@"i

Proof : " = tei in the global sensitivity
p?(tei) � p?(0)� ty?

i

lim
t&0

p?(tei)� p?(0)

t
� �y?

i

lim
t%0

p?(tei)� p?(0)

t
 �y?

i
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Exemple 3 : Diagonalization of a symetric matrix

inf
||x ||=1

hAx , xi

with A a symetric matrix in Rn⇥n.

inf
c(x)=0

f (x) with f (x) = hAx , xi and c(x) = ||x ||2 � 1

Existence of a minimum since f is continuous and {x , ||x || = 1}
bounded closed set.
f differentiable and {c(x) = 0} Lagrange multipliers) 9y? 2 R
s.t. 2Ax? + 2y?x? = 0
) 9(�, v) 2 R⇥ Rn, Av = �v and f (v) = inf ||x ||=1 f (x).
Recurrence hypothesis Hn : existence of a orthonormal
eigenvector basis of A with n related eignevalues
n = 1 easy
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Suppose Hn true

For A 2 Rn+1⇥n+1we consider the subspace H = {vect(x?)}?.
dim H = n
H is stable by A. Indeed

if hx?, xi = 0 then hx?, Axi = hAx?, xi = h�y?x?, xi = 0

The restriction of A to H is a matrix n ⇥ n therefore using Hn
existence of a orthonormal eigenvector basis of the restriction
of A to H.
We divide x? by ||x?|| in order to complete this basis on Rn+1.
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Exemple 4 : Minimization of a quadratic function under
linear constraints of equality

f (x) =
1
2
hAx , xi+ hb, xi

c(x) = Bx � C

with A defined symetric positive matrix in Rn⇥n, b vector in Rn,
B matrix in Rm⇥n and C vector in Rm.
Qualified constraints, rang(B) = m.
Lagrangian :

`(x , y) =
1
2
hAx , xi+ hb, xi+ hy , Bx � Ci
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Theorem of Lagrange multipliers

rx`(x , y) = Ax + b + Bty = 0
Bx = C

A defined symetric positive matrix) x = �A�1(b + Bty).
B(�A�1(b + Bty)) = C
rang(B) = m) BA�1Bt is invertible
BA�1Bty = �(BA�1b + C) from which we get y then x .
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Utilisation : SQP algorithm -linear equality constraints
Let the minimization problem with linear equality constraints

8
<
:

inf f (x)
s.c. Bx � c = 0

x 2 Rn
with

8
<
:

f : Rn �! R, twice differentiable
B 2Mm⇥n(R),
c 2 Rm.

The Lagrangian is

`(x , y) = f (x) + hay , Bx � ci

The 1st order optimality constrainst are

rx`(x , y) = rf (x) + BT y = 0Rn

ry`(x , y) = Bx � c = 0Rm

Let G = Rn+m ! Rn+m, G(x , y) =

✓
rf (x) + BT y

Bx � c

◆
and use the

Newton method to find its zero in Rn+m
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SQP algorithm : Newton method in Rn+m

G(x , y) =

✓
rf (x) + BT y

Bx � c

◆
JG(x , y) =

✓
Hf (x) BT

B 0m⇥m

◆

Newton method :
⇢

xk+1 = xk + dk
yk+1 = yk + �k

JG(xk , yk )

✓
xk
�k

◆
= �G(xk , yk )

Leads to
⇢

Hf (xk )dk +rf (xk ) + BT yk + BT �k = 0
Bdk = 0

Which is equivalent to solve

inf
Bd=0

1
2
hHf (xk )d , di+ hrf (xk ) + BT yk , di
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Algorithme SQP - linear equality constraints

At each iteration k
I let Jk (d) = 1

2hHf (xk )d , di+ hrf (xk ) + BT yk , di
I minimize Jk (d) under constraint C(d) = Bd = 0

`(d , �) = Jk (d) + h�, Bdi
rd`(d , �) = 0 and Cd = 0 leads to the linear system

✓
Hf (xk ) BT

B 0

◆✓
d
�

◆
=

✓
�rf (xk )� BT yk

0Rm

◆
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Algorithme SQP - linear equality constraints

3 pitfalls
1. Hf (xk ) may be hard to compute : quasi-Newton

approximation Ĥ
2. Ĥ may be not invertible : penalize with

max(0,�min(�Ĥ) + ")

3. r�`(�, y) might not decrease -> line search for a better step
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Algorithme SQP - linear equality constraints

Data: Function f , gradient rf , hessien Hf , tolerance ⌧ , max
number of iterations kmax

Result: f (x?) = minx2Rn f (x)
Initialisation : choose x0 2 Rn, d0 2 Rn t.q. ||d0|| > ⌧
while ||dk || � ⌧ and k < kmax do

Compute f (xk ), rf (xk ) et Hf (xk )
Minimize Jk (d) = 1

2hHf (xk )d , di+ hrf (xk ) + BT yk , di
under constraints Bd = 0 ! find d? and �?

Update dk = d?,
Update xk+1 = xk + d?, yk+1 = yk + �?

Update k  k + 1
end
x? = xk
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Exercice
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