Théorème des extrema liés - Lagrange multipliers
Primal Pb: $\quad x^{*}=\min _{x \in D_{a}} f(x)$
Let $f$ and $C$ in $C^{1}$, and $x^{\star}$ a local minimizer of $f$ satisfying
$f: \mathbb{R}^{n} \rightarrow \mathbb{R} C\left(x^{*}\right)=0$ primal feasability
$C: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \quad \operatorname{rank} \nabla J C\left(x^{*}\right)=m$
If the constraints are qualified, there exists a vector of Lagrange multipliers $y^{\star} \in \mathbb{R}^{m}$ s. t. $\quad \nabla_{x} \ell\left(x^{*}, y^{*}\right)=0_{\mathbb{R}^{n}}$
$\mid \nabla f\left(x^{\star}\right)+\sum_{i=1}^{m} y_{i}^{\star} \nabla C_{i}\left(x^{\star}\right)=0$ dual feasability

- Linear constraints special case
- $n=2, m=1$ special case

Linear constraints special case

$$
\inf _{c(x)=0} f(x)
$$

$c(x)=\left(\left\langle c_{1}, x\right\rangle, \ldots,\left\langle c_{m}, x\right\rangle\right)^{\perp}$ qualified hypothesis
$\left(c_{i}\right)_{i=1, \ldots, m \text { independent }}$ vectors family in $R^{n}$

$$
\begin{gathered}
D_{a}=K=\left\{x,\left\langle c_{i}, x\right\rangle=0, i=1, \ldots, m\right\}=\text { admissible sat } \\
\inf _{x \in K} f(x) \Leftrightarrow \inf _{\alpha \in \mathbb{R}^{p}} g(\alpha)=g\left(\alpha^{*}\right) \Rightarrow \nabla g\left(\alpha^{*}\right)=0 \\
\text { with } g(\alpha)=f\left(\sum_{i=1}^{p} \alpha_{i} k_{i}\right),\left(k_{i}\right)_{i=1, \ldots, p, \text { basis of } K} \text { Ln -m }_{n-m}
\end{gathered}
$$

$$
\begin{aligned}
& g\left(\alpha^{*}\right)=f\left(\sum_{1=1}^{p} \alpha_{i} k_{i}\right) \quad \nabla g\left(\alpha^{*}\right)=\left(\frac{\partial g}{\partial \alpha_{i}}\right)_{i=1} \ldots p \\
& \frac{\partial g}{\partial \alpha_{i}}\left(\alpha^{*}\right)=\left\langle k_{i}, \nabla f\left(\sum \alpha_{i}^{*} k_{i}\right)\right\rangle=0 \quad f i \ldots \\
& \nabla f\left(x^{*}\right) \in \operatorname{viv}\left\{\left(k_{i}\right)\right\}^{2}=\operatorname{visp}\left\{\left(c_{i}\right)^{2}\right\}^{\perp}=\text { v.r. }\left\{\left(c_{i}\right)\right\} \Rightarrow
\end{aligned}
$$

$\exists \lambda_{i}, \nabla f\left(x^{*}\right)=\sum_{i=1}^{m} \lambda_{i} C_{i}$

$$
\nabla f\left(x^{*}\right)+\left\langle y_{1}^{*} C\left(x^{*}\right)\right\rangle=0 \text { choose } y_{i}^{*}=-\lambda_{i}
$$

$V, S$ redor space generated by a familyofvedors.

Special case $n=2, m=1$ $C: \mathbb{R} \rightarrow R$

Qualification condition for one single constraint $m=1$ :
$\nabla_{x} c_{1}\left(x^{\star}\right) \neq 0$, we can suppose $\partial_{x_{2}} c_{1}\left(x^{\star}\right) \neq 0$.
Implicit function theorem : $\exists V_{1} \times V_{2}$ containing $x^{\star}$ and $\varphi$ unique and differentiable in $x^{\star}$ s. t. $\forall x_{1} \in V_{1} c_{1}\left(\left[x_{1}, \varphi\left(x_{1}\right)\right]\right)=0$ and $x_{2}^{\star}=\varphi\left(x_{1}^{\star}\right)$ with

$$
\varphi^{\prime}\left(x_{1}\right)=\frac{-1}{\partial_{x_{2}} c_{1}(x)} \partial_{x_{1}} c_{1}(x)
$$

## Proof

$$
\inf _{c_{1}(x)=0} f(x) \quad \Leftrightarrow \quad \inf _{x_{1} \in V_{1}} \tilde{f}\left(x_{1}\right), \quad \text { with } \tilde{f}\left(x_{1}\right)=f\left(\left[x_{1}, \varphi\left(x_{1}\right)\right]\right)
$$

First order ptimality conditions for $\tilde{f}$ (without constraints since $V_{1}$ is an open set)

$$
\begin{gathered}
\tilde{f}^{\prime}\left(x_{1}^{\star}\right)=0 \Leftrightarrow \frac{\partial f}{\partial x_{1}}\left(\left[x_{1}^{\star}, \varphi\left(x_{1}^{\star}\right)\right]\right)+\varphi^{\prime}\left(x_{1}^{\star}\right) \frac{\partial f}{\partial x_{2}}\left(\left[x_{1}^{\star}, \varphi\left(x_{1}^{\star}\right)\right]\right)=0 . \\
y=-\frac{\partial_{x_{2}} f\left(x^{\star}\right)}{\partial_{x_{2}} c_{1}\left(x^{\star}\right)}
\end{gathered}
$$

Example $1 \quad \begin{array}{ll} & \mathbb{R}^{2} \rightarrow \mathbb{R} \\ & C: \mathbb{R}^{2} \rightarrow \mathbb{R} \quad C(x)=\|x\|^{2}-1\end{array}$
$D_{a}$ is the circle of center $O$ and radms 1 .

$$
\inf _{x_{1}^{2}+x_{2}^{2}=1} x_{1}^{4}+x_{2}^{4}=f(x)
$$

Resolution by changing variables in polar coordinates
Set $x_{1}=\cos (\theta) x_{2}=\sin (\theta)$, problem (4) becomes
$\inf _{\theta \in[0,2 \pi]}\left(\cos \theta \theta^{4}+(\sin \theta)^{4}\right)$ whose solution is obtained by finding the zero of the derivative:

$$
4 \cos \theta \sin \theta\left(-(\cos \theta)^{2}+(\sin \theta)^{2}\right)=-2 \sin (2 \theta) \cos (2 \theta)=0,
$$

4 local minima ( $\pm \sqrt{2} / 2, \pm \sqrt{2} / 2$ ), où $f(x)=1 / 2$,
4 local maxima $\{(1,0),(0,1),(-1,0),(0,-1))\}$, où $f(x)=1$.

Resolution using Lagrange multipliers
So prox $f\left(x^{v}\right)=$ min fox) $\quad \exists y^{*} \in \mathbb{R}$ s. 1.

$$
\nabla_{x} l\left(x^{*}, y^{*}\right)=O_{R^{2}} \quad(x)=x_{1}^{2}+x_{2}^{2}-1
$$

We seek $x^{\star} \in \mathbb{R}^{2}$ and $y^{\star} \in \mathbb{R}$ s. t.
Rank JC $\left(x^{*}\right)=1$

$$
\begin{gathered}
C\left(x^{y}\right)=0 \longrightarrow
\end{gathered} \quad\left\{\begin{array}{l}
\left(x_{1}^{\star}\right)^{2}+\left(x_{2}^{\star}\right)^{2}=1 \\
4\left(x_{1}^{\star}\right)^{3}+y^{\star} 2 x_{1}^{\star}=0 \\
4\left(x_{2}^{\star}\right)^{3}+y^{\star} 2 x_{2}^{\star}=0
\end{array}\right] \begin{aligned}
& l(x, y)=f(x)+\left\langle y_{1} C(x)\right\rangle=x_{1}^{4}+x_{2}^{\prime \prime}+y\left(x_{1}^{2}+x_{2}^{2}-1\right) \\
& \nabla_{x}(x, y)=4\binom{x_{1}^{3}}{x_{2}^{3}}+2 y\binom{x_{1}}{x_{2}}
\end{aligned}
$$

Resolution using Lagrange multipliers

We seek $x^{\star} \in \mathbb{R}^{2}$ and $y^{\star} \in \mathbb{R}$ s. t.

$$
\begin{aligned}
& \left(x_{1}^{\star}\right)^{2}+\left(x_{2}^{\star}\right)^{2}=1 \\
& 2 x_{1}\left(2 x_{1}^{2}+y\right)=4\left(x_{1}^{\star}\right)^{3}+y^{\star} 2 x_{1}^{\star}=0 \\
& 2 x_{2}\left(2 x_{2}^{2}+y\right)=4\left(x_{2}^{\star}\right)^{3}+y^{\star} 2 x_{2}^{\star}=0 \\
& \begin{array}{l|c|l} 
& x_{1}=0 & y=-2 x_{1}^{2} \\
\hline x_{2}=0 & 0 f D_{a} & \begin{array}{l}
x_{1}= \pm 1 \quad \\
y=-2
\end{array} \quad f(x)=1 \\
\hline y=-2 x_{2}^{2} & \begin{array}{l}
x_{2}= \pm 1 \\
y=-2 \\
f(x)=1
\end{array} & \begin{array}{l}
y=-1 \\
x_{1}= \pm \sqrt{2} / 2 \\
x_{2}= \pm \sqrt{2} / 2
\end{array} \quad f(x)=\frac{1}{2}
\end{array}
\end{aligned}
$$

## Resolution using Lagrange multipliers

We seek $x^{\star} \in \mathbb{R}^{2}$ and $y^{\star} \in \mathbb{R}$ s. t.

$$
\begin{aligned}
\left(x_{1}^{\star}\right)^{2}+\left(x_{2}^{\star}\right)^{2} & =1 \\
4\left(x_{1}^{\star}\right)^{3}+y^{\star} 2 x_{1}^{\star} & =0 \\
4\left(x_{2}^{\star}\right)^{3}+y^{\star} 2 x_{2}^{\star} & =0
\end{aligned}
$$

|  | $x_{1}^{\star}=0$ | $y^{\star}=-2\left(x_{1}^{\star}\right)^{2}$ |
| :---: | :---: | :---: |
| $x_{2}^{\star}=0$ | $\left(x_{1}^{\star}\right)^{2}+\left(x_{2}^{\star}\right)^{2} \neq 1$ | $\left(x_{1}^{\star}\right)^{2}=1$ et $y^{\star}=-2$ |
| $f\left(x^{\star}\right)=1$ |  |  |
| $y^{\star}=-2\left(x_{2}^{\star}\right)^{2}$ | $\left(x_{2}^{\star}\right)^{2}=1$ et $y^{\star}=-2$ | $\left(x_{1}^{\star}\right)^{2}=\left(x_{2}^{\star}\right)^{2}=1 / 2$ et $y^{\star}=-1$, |
|  | $f\left(x^{\star}\right)=1$ | $f\left(x^{\star}\right)=1 / 2$ |

Example 2

1) check that $C$ qualified $\operatorname{Rank} J C(x)=1$
2) check that $x^{*}$ exists
3) apply the LM theorem

$$
\begin{aligned}
& D_{a}=\left\{x, x_{1}+x_{2}=1\right\}=\text { li re } \\
& \text { Find } \\
& \left.\qquad \begin{array}{rl}
f(x) & =\frac{1}{2}\langle A x, x\rangle+\langle b, x\rangle+c
\end{array}\right\} \\
& \inf _{C(x)=0} f(x) \quad \begin{aligned}
f(x) & =3 x_{1}^{2}+5 x_{2}^{2}-3 x_{1} x_{2}, \quad C(x)=x_{1}+x_{2}-1 \\
& \left.=\left(x_{1}-\frac{3}{2} x_{2}\right)^{2}+2 x_{1}^{2}+\left(S-\frac{9}{4}\right) x_{2}^{2} \geqslant 0 \quad \| x+\infty\right) \rightarrow+\infty
\end{aligned}
\end{aligned}
$$

Lagrangian $\ell(x, y)=3 x_{1}^{2}+5 x_{2}^{2}-3 x_{1} x_{2}+y\left(x_{1}+x_{2}-1\right)$
f is a polynomial of degree 2 : therefor the Taylor expansion of dequer 2 ?s exadr

$$
\begin{aligned}
& f(x)=f(0)+\langle\nabla f(0), x\rangle+\frac{1}{2}\langle H f(0) x, x\rangle \\
& \nabla f(x)=\binom{6 x_{1}-3 x_{2}}{-3 x_{1}+10 x_{2}} \\
& H f(x)=\left(\begin{array}{cc}
6 & -3 \\
-3 & 10
\end{array}\right) \text { dep } 1 \text { ff }=51>0 \text { and incece } H f=16>0 \quad \leadsto \lambda>0 \\
& \lambda_{\text {min }}\|x \mid\|^{2} \leq\left\langle A_{x}, x\right\rangle \leq \lambda_{\text {max }}(|x| R \\
& \operatorname{Dim}_{1}^{\lim } f(x)=f(0)+f(0) x+\frac{1}{2} f^{(l}(0) x^{2}+\frac{1}{6} f^{(3)}(0) x^{3}+\theta\left(x^{3}\right)
\end{aligned}
$$

## Exemple 2

Find

$$
\inf _{C(x)=0} f(x) \quad f(x)=3 x_{1}^{2}+5 x_{2}^{2}-3 x_{1} x_{2}, \quad C\left(x^{n}\right)=x_{1}+x_{2}-1=0
$$

- Lagrangian $\ell(x, y)=3 x_{1}^{2}+5 x_{2}^{2}-3 x_{1} x_{2}+y\left(x_{1}+x_{2}-1\right)$
- Gradient $\nabla \ell\left(x^{*}, y^{*}\right)=\binom{6 x_{1}^{*}-3 x_{2}^{*}+y^{*}}{-3 x_{1}^{*}+10 x_{2}^{*}+y^{*}}=\binom{0}{0}$


## Exemple 2

Find
$\inf _{C(x)=0} f(x) \quad f(x)=3 x_{1}^{2}+5 x_{2}^{2}-3 x_{1} x_{2}, \quad C(x)=x_{1}+x_{2}-1$

- Lagrangian $\ell(x, y)=3 x_{1}^{2}+5 x_{2}^{2}-3 x_{1} x_{2}+y\left(x_{1}+x_{2}-1\right)$
- Gradient $\nabla \ell(x, y)=\binom{6 x_{1}-3 x_{2}+y}{-3 x_{1}+10 x_{2}+y}$
- If $f\left(x^{\star}\right)=\inf _{C(x)=0} f(x)$ then $\exists y^{\star} \in \mathbb{R}$ s.t. $\nabla \ell\left(x^{\star}, y^{\star}\right)=0$


## Exemple 2

Find
$\inf _{C(x)=0} f(x) \quad f(x)=3 x_{1}^{2}+5 x_{2}^{2}-3 x_{1} x_{2}, \quad C(x)=x_{1}+x_{2}-1$

- Lagrangian $\ell(x, y)=3 x_{1}^{2}+5 x_{2}^{2}-3 x_{1} x_{2}+y\left(x_{1}+x_{2}-1\right)$
- Gradient $\nabla \ell(x, y)=\binom{6 x_{1}-3 x_{2}+y}{-3 x_{1}+10 x_{2}+y}$
- If $f\left(x^{\star}\right)=\inf _{C(x)=0} f(x)$ then $\exists y^{\star} \in \mathbb{R}$ s.t. $\nabla \ell\left(x^{\star}, y^{\star}\right)=0$
- Plus the primal condition $C\left(x^{\star}\right)=0$

Example 2

$$
\left\lvert\, \begin{aligned}
& 6 x_{1}-3 x_{2}+y=0 \\
& -3 x_{1}+10 x_{2}+y=0 \\
& x_{1}+x_{2}=1
\end{aligned}\right.
$$

to be solved as

- Solve the system of 3 equations to find $x^{\star}, y^{*}$

Example 2 Altcrnaker method to minimize

$$
\begin{aligned}
& \left.f(x)=3 x_{1}^{2}+5 x_{2}^{2}\right\}^{-3 x_{1} x_{2}} \\
& D_{a}=\left\{x_{1}+x_{2}=1\right\} \\
& \text { express } x_{2}=1-x_{1} \quad g\left(x_{1}\right)
\end{aligned}
$$

## linear

- Solve the system of 3 equations to find $x^{\star}, y$
- Other method ?

Second order optimality conditions

$$
\begin{aligned}
& \nabla_{x} l\left(x^{*}, y^{*}\right)=0 \\
& H=H_{x} l\left(x^{*}, y^{*}\right) \quad A(x)=J C(x)
\end{aligned}
$$

Let $f$ and $c$ in $C^{2}$, and $x^{\star}$ be a local minimizer of $f$ verifying the constraints of equality $c\left(x^{\star}\right)=0$. If the constraints are qualified, there exists a vector of Lagrange multipliers $y^{\star} \in \mathbb{R}^{m}$ such that

$$
\left\langle s, H\left(x^{\star}, y^{\star}\right) s\right\rangle \geq 0 \text { for all } s \in \mathcal{N}
$$

where

$$
\begin{aligned}
& \mathcal{N}=\left\{s \in \mathbb{R}^{n}, A\left(x^{\star}\right) s=0\right\} \text {. linear agpox: } \\
& \text { notion of (Aa } \\
& D_{a}=\{x, C(x)=0\} \\
& C(x)=C\left(x^{*}\right)+J C\left(x^{*}\right)\left(x-x^{4}\right) \\
& =J C\left(x^{*}\right)\left(x-x^{+*}\right)+o\left(11 x-x^{*}+11\right) \\
& C(x) \simeq A\left(x^{*}\right)\left(x-x^{*}\right)
\end{aligned}
$$

## Interpretation of Lagrange multipliers

The Lagrange multiplier $y_{i}$ measures the sensitivity of the minimum $x^{\star}$ with respect to the corresponding constraint.

$\rho^{y}$| Initial primal and dual problems |
| :--- |
| $=\operatorname{sinf}_{c(x)=0} f(x)$ |
|  |
|  |
| avec $g(y)=\operatorname{sun}_{y} g(y)$ |$\quad$| anf $f(x)+y^{t} c(x)$ |
| :--- |

Perturbated primal and dual problems

$p^{\prime}(\varepsilon)=$| $\inf _{c(x)=\varepsilon} f(x)$ | $\sup _{y} g(y)-\varepsilon^{T} y$ |
| :---: | :---: |

- $x$ is the primal variable, $\varepsilon$ a parameter
- $p^{\star}(\varepsilon)$ the optimal value when $\varepsilon$ varies


## Global interpretation of Lagrange multipliers

Hyp: strong duality for the undisturbed problem, that is $y^{\star}$ t.q.
$g\left(y^{\star}\right)=d^{\star}=p^{\star}(0)$
For the perturbated problem we have

$$
\begin{aligned}
p^{\star}(\varepsilon) & \geq \max _{y} g(y)-\varepsilon^{T} y \\
& \geq g\left(y^{\star}\right)-\varepsilon^{\top} y^{\star} \\
& \geq p^{\star}(0)-\varepsilon^{T} y^{\star}
\end{aligned}
$$

d'où

- if $y_{i}^{\star}>0$ and large, $p^{\star}$ increases a lot if $\varepsilon_{i}<0$
- if $y_{i}^{\star}<0$ and large, $p^{\star}$ disminishes a lot if $\varepsilon_{i}>0$

Local interpretation of Lagrange multipliers

$$
\begin{aligned}
P^{*}(\varepsilon)=u f f(x)=\varepsilon & C: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \\
& y_{i}^{\star}=-\frac{\partial p^{\star}(0)}{\partial \varepsilon_{i}}
\end{aligned} \text { for } i=1, \ldots, m m
$$

Proof : $\varepsilon=t e_{i}$ in the global sensitivity
$p^{\star}\left(t e_{i}\right) \geq p^{\star}(0)-t y_{i}^{\star}$

$$
\begin{aligned}
& \lim _{t \geq 0} \frac{p^{\star}\left(t e_{i}\right)-p^{\star}(0)}{t} \geq-y_{i}^{\star} \\
& \lim _{t>0} \frac{p^{\star}\left(t e_{i}\right)-p^{\star}(0)}{t} \leq-y_{i}^{\star}
\end{aligned}
$$

## Example 3 : Diagonalization of a symmetric matrix

$$
\begin{gathered}
l(x, y)=\langle A x, x\rangle+y\left(\|x\|^{2}-1\right) \quad y \in \mathbb{R} \\
\nabla_{f}(x, y)=2 A x+2 y x \\
\inf _{\|x\|=1}\langle A x, x\rangle
\end{gathered}
$$

with $A$ a symmetric matrix in $\mathbb{R}^{n \times n}$. $A \in S^{n}$

- Existence of a minimum since $f$ is continuous and $\{x,\|x\|=1\}$ bounded closed set.
- $f$ differentiable and $\{c(x)=0\}$ Lagrange multipliers $\Rightarrow \exists y^{\star} \in \mathbb{R}$

$\Rightarrow \exists(\lambda, v) \in \mathbb{R} \times \mathbb{R}^{n}, A v=\lambda v$ and $f(v)=\inf _{\|x\|=1} f(x)$.
Recurrence hypothesis $H_{n}$ : existence of a orthonormal eigenvector basis of $A$ with $n$ related eigeevalues
$n=1$ easy


## Suppose $H_{n}$ true

For $A \in \mathbb{R}^{n+1 \times n+1}$ we consider the subspace $H=\left\{\operatorname{vect}\left(x^{\star}\right)\right\}^{\perp}$. $\operatorname{dim} H=n$
$H$ is stable by $A$. Indeed $\quad x \in H:\left\langle x, x^{*}\right\rangle=0$

$$
\text { if }\left\langle x^{\star}, x\right\rangle=0 \text { then }\left\langle x^{\star}, A x\right\rangle=\left\langle A x^{\star}, x\right\rangle=\left\langle-y^{\star} x^{\star}, x\right\rangle=0
$$

The restriction of $A$ to $H$ is a matrix $n \times n$ therefore using $H_{n}$ existence of a orthonormal eigenvector basis of the restriction of $A$ to $H$.
We divide $x^{\star}$ by $\left\|x^{\star}\right\|$ in order to complete this basis on $\mathbb{R}^{n+1}$.

Exemple 4 : Minimization of a quadratic function under linear constraints of equality
$c: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$

$$
\begin{array}{ll}
f(x)=\frac{1}{2}\langle A x, x\rangle+\langle b, x\rangle & A \in S_{++}^{n} \\
c(x) & =B x-C
\end{array}
$$

with $A$ defined symetric positive matrix in $\mathbb{R}^{n \times n}, b$ vector in $\mathbb{R}^{n}$,
$B$ matrix in $\mathbb{R}^{m \times n}$ and $C$ vector in $\mathbb{R}^{m}$.
Qualified constraints $\Leftrightarrow \operatorname{rang}(B)=m$.
Lagrangian :

$$
\ell(x, y)=\frac{1}{2}\langle A x, x\rangle+\langle b, x\rangle+\langle y, B x-C\rangle
$$

Theorem of Lagrange multipliers

$$
\ell(x, y)=\frac{1}{2}\left\langle A_{x}, x\right\rangle+\langle b, x\rangle+\langle y, B x-C\rangle
$$

then should be stars everycuhare below:

$$
\begin{aligned}
& \qquad \begin{array}{l}
\operatorname{Rak} B+\operatorname{dim} \operatorname{Ker} B=\operatorname{dim} n \\
\frac{\operatorname{Rank}}{m} B^{T}+\frac{\operatorname{dim} \operatorname{Ker}}{B_{0}^{T}}=m
\end{array} \\
& \nabla_{x} \ell(x, y)=m+b+B^{t} y=0 \\
& B x=C
\end{aligned}
$$

$A$ defined symmetric positive matrix $\Rightarrow x=-A^{-1}\left(b+B^{t} y\right)$.

$$
B\left(-A^{-1}\left(b+B^{t} y\right)\right)=C
$$

rang $(B)=m \Rightarrow B A^{-1} B^{t}$ is invertible
$B A^{-1} B^{t} y=-\left(B A^{-1} b+C\right)$ from which we get $y$ then $x$.

$$
\begin{aligned}
&\left.0<B A^{-1} B^{4} y, y\right\rangle= \\
& y=-\left(B A^{-1} A^{4} y, B^{-} y>=0 \Rightarrow\right. \\
& x=-A^{-1}\left(b-B^{+}\right)^{-1}\left(B A^{-1}\left(B A^{-1} B^{4}\right)^{-1}\left(B A^{-1} b+C\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& B^{C} y=0 \\
& \text { vang } B=m \Rightarrow y=0
\end{aligned}
$$

## Utilisation : SQP algorithm -linear equality constraints

Let the minimization problem with linear equality constraints

$$
\left\{\begin{array} { l c } 
{ \text { inf } } & { f ( x ) } \\
{ \text { s.c. } } & { B x - c = 0 } \\
{ x \in \mathbb { R } ^ { n } }
\end{array} \quad \text { with } \left\{\begin{array}{l}
f: \mathbb{R}^{n} \longrightarrow \mathbb{R}, \text { twice differentiable } \\
B \in \mathcal{M}_{m \times n}(\mathbb{R}), \\
c \in \mathbb{R}^{m} .
\end{array}\right.\right.
$$

The Lagrangian is

$$
\ell(x, y)=f(x)+\langle\langle y, B x-c\rangle
$$

The 1st order optimality constrainst are

$$
\begin{aligned}
\nabla_{x} \ell(x, y) & =\nabla f(x)+B^{T} y=0_{\mathbb{R}^{n}} \\
\nabla_{y} \ell(x, y) & =B x-c=0_{\mathbb{R}^{m}}
\end{aligned}
$$

Let $G=\mathbb{R}^{n+m} \rightarrow \mathbb{R}^{n+m}, G(x, y)=\binom{\nabla f(x)+B^{T} y}{B x-c}$ and use the
Newton method to find its zero in $\mathbb{R}^{n+m}$

SQP algorithm : Newton method in $\mathbb{R}^{n+m}$
$G: \mathbb{R}^{n+m} \rightarrow \mathbb{R}^{n+2 n}$

$$
G(x, y)=n_{m}^{n}\binom{\nabla f(x)+B^{T} y}{B x-c} \quad J G(x, y)=\left(\begin{array}{cc}
H f(x) & B^{T} \\
B & 0_{m \times m}
\end{array}\right)
$$

Newton method : $\left\{\begin{array}{l}x_{k+1}=x_{k}+d_{k} \\ y_{k+1}=y_{k}+\delta_{k}\end{array}\right.$

$$
J G\left(x_{k}, y_{k}\right)\binom{\boldsymbol{d}_{k}}{\delta_{k}}=-\boldsymbol{G}\left(x_{k}, y_{k}\right)
$$

Leads to

$$
\left\{\begin{array}{l}
H f\left(x_{k}\right) d_{k}+\nabla f\left(x_{k}\right)+B^{T} y_{k}+B^{\top} \delta_{k}=0=\nabla \tilde{f}(d) \\
B d_{k}=0
\end{array}\right.
$$

Which is equivalent to solve

$$
\inf _{B d=0} \frac{1}{2}\left\langle H f\left(x_{k}\right) d, d\right\rangle+\left\langle\nabla f\left(x_{k}\right)+B^{T} y_{k}, d\right\rangle=\tilde{f}(d)
$$

Algorithme SQP - linear equality constraints

At each iteration $k$, I know $x_{k}, y_{k}^{e}$ the lequange on ult pier

- let $J_{k}(d)=\frac{1}{2}\left\langle H f\left(x_{k}\right) d, d\right\rangle+\left\langle\nabla f\left(x_{k}\right)+B^{T} y_{k}, d\right\rangle$
- minimize $J_{k}(d)$ under constraint $C(d)=B d=0$ use slide number 249

$$
\ell(d, \delta)=J_{k}(d)+\langle\delta, B d\rangle
$$

$\nabla_{d} \ell(d, \delta)=0$ and $C d=0$ leads to the linear system

$$
\left.\begin{array}{l}
\left(\begin{array}{cc}
H f\left(x^{k}\right) & B^{T} \\
B & 0
\end{array}\right)\binom{d}{\delta}=\binom{-\nabla f\left(x^{k}\right)-B^{T} y_{k}}{0_{\mathbb{R}^{m}}} \\
x_{k+1}=x_{k}+d \\
y_{k+1}=y_{k}+\delta
\end{array}\right) \quad\left\{\begin{array}{c}
x_{k}+\alpha d \\
y_{k}+\alpha \delta
\end{array} \quad\right. \text { instead }
$$

## Algorithme SQP - linear equality constraints

3 pitfalls

1. $H f\left(x^{k}\right)$ may be hard to compute : quasi-Newton approximation $\hat{H}$
2. $\hat{H}$ may be not invertible : penalize with $\max \left(0,-\min \left(\lambda_{\hat{H}}\right)+\varepsilon\right) I d$
3. $\nabla_{\delta} \ell(\delta, y)$ might not decrease -> line search for a better step

## Algorithme SQP - linear equality constraints

Data: Function $f$, gradient $\nabla f$, hessien $H f$, tolerance $\tau$, max number of iterations $k_{\text {max }}$
Result: $f\left(x^{\star}\right)=\min _{x \in \mathbb{R}^{n}} f(x)$
Initialisation : choose $x_{0} \in \mathbb{R}^{n}$, $d_{0} \in \mathbb{R}^{n}$ t.q. $\left\|d_{0}\right\|>\tau$
while $\left\|d^{k}\right\| \geq \tau$ and $k<k_{\text {max }}$ do
Compute $f\left(x^{k}\right), \nabla f\left(x^{k}\right)$ et $\operatorname{Hf}\left(x^{k}\right)$
Minimize $J_{k}(d)=\frac{1}{2}\left\langle H f\left(x_{k}\right) d, d\right\rangle+\left\langle\nabla f\left(x_{k}\right)+B^{T} y_{k}, d\right\rangle$
under constraints $B d=0 \rightarrow$ find $d^{\star}$ and $\delta^{\star}$
Update $d_{k}=d^{\star}$,
Update $x^{k+1}=x^{k}+d^{\star}, \quad y^{k+1}=y^{k}+\delta^{\star}$
Update $k \leftarrow k+1$
end
$x^{\star}=x_{k}$


$$
f(x)=x_{1}^{2}+2 x_{2}^{2}
$$

1) which level curve is chain?
2) set $x=\binom{1}{1}$
compute - $\nabla f(x)$
cat $x-\nabla f(x)$ on
the graph and dhow
the dine
3) Compute $\alpha_{\text {max }}$ such that $f(x-\alpha \nabla f(x))$

$$
\angle f(x) \text { for }
$$

$0<d<\alpha_{\text {max }}$

$$
-\nabla f(x)=-\binom{2 x_{1}}{4 x_{2}}=-\binom{2}{4}
$$

$4 \alpha^{2}+2-16 \alpha+32 \alpha^{2}$ $=3-20 \alpha+36 \alpha^{2}=3$ when $-5+9 \alpha=0 \equiv 205$

