Théorème des extrema liés - Lagrange multipliers

$$find Pb$$
; $x^* = \min_{x \in D_0} f_{x}^{(x)}, c(x) = 0$ }
Let f and C in C^1 , and x^* a local minimizer of f satisfying
 $f : \mathbb{R}^n \to \mathbb{R}^n$ $c(x^*) = 0$ primal feasability
 $C : \mathbb{R}^n \to \mathbb{R}^m$ row $\mathcal{TC}(x^*) = \mathbf{m}$
If the constraints are qualified, there exists a vector of Lagrange
multipliers $y^* \in \mathbb{R}^m$ s. t. $\nabla_x \ell(x^*, y^*) = O_{\mathbb{R}^n}$
 $\int \nabla f(x^*) + \sum_{i=1}^m y_i^* \nabla C_i(x^*) = 0$ dual feasability
 $look$ for (x^*, y^*) such that $\int C(x^*) O_{\mathbb{R}^m}$
 $Linear constraints special case
 $h = 2, m = 1$ special case $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$$

$$\inf_{C(x)=0} f(x)$$

$$\begin{split} c(x) &= (\langle c_1, x \rangle, \dots, \langle c_m, x \rangle)^{\perp} \text{ qualified hypothesis} \\ (c_i)_{i=1,\dots,m} \text{independant vectors family in } R^n \\ \mathcal{D}_{a} &= K = \{x, \langle c_i, x \rangle = 0, i = 1, \dots, m\} = \text{ admissible sat} \end{split}$$

$$\inf_{x \in K} f(x) \Leftrightarrow \inf_{\alpha \in \mathbb{R}^{p}} g(\alpha) = q(\alpha^{*}) \Longrightarrow \nabla g(\alpha^{*}) = \mathcal{O}$$

with $g(\alpha) = f\left(\sum_{i=1}^{p} \alpha_{i} k_{i}\right), \ (k_{i})_{i=1,...,p}, \text{ basis of } K$

< ロ > < 団 > < 三 > < 三 > < 三 > < ○ < ○

$$g(a^{*}) = f\left(\sum_{i=1}^{p} a_{i}^{i} k_{i}\right) \quad \nabla g(a^{*}) = \left(\frac{\partial \Phi}{\partial a_{i}}\right)_{i=1,\dots,p}$$

$$\frac{\partial \Phi}{\partial a_{i}}(a^{*}) = \langle k_{i}, \nabla f(za^{*} h_{i}) \rangle = 0 \quad \forall i \dots$$

$$\nabla f(z^{*}) \in e^{i} (k_{i}) \}^{\perp} \quad \underbrace{V.S}_{e^{i}} (c_{i})^{2} f^{\perp} = e^{i} f(c_{i})^{2} =)$$

$$Jd_{i}, \quad \nabla f(zx^{*}) = \sum_{i=1}^{p} \partial_{i} c_{i}$$

$$\nabla f(xx^{*}) = \sum_{i=1}^{p} \partial_{i} c_{i}$$

$$V.S \quad vedor \quad space \quad approach \quad by \quad a \quad family of vectors.$$

$$e.v \quad espace \quad vetoried \quad by \quad a \quad family of vectors.$$

•

Special case n = 2, m = 1 $C: \mathbb{R} \rightarrow \mathbb{R}$

Qualification condition for one single constraint m = 1: $\nabla_x c_1(x^*) \neq 0$, we can suppose $\partial_{x_2} c_1(x^*) \neq 0$. Implicit function theorem : $\exists V_1 \times V_2$ containing x^* and φ unique and differentiable in x^* s. t. $\forall x_1 \in V_1 \ c_1([x_1, \varphi(x_1)]) = 0$ and $x_2^* = \varphi(x_1^*)$ with

$$\varphi'(x_1) = \frac{-1}{\partial_{x_2} c_1(x)} \partial_{x_1} c_1(x).$$

Proof

$$\inf_{c_1(x)=0} f(x) \quad \Leftrightarrow \quad \inf_{x_1 \in V_1} \tilde{f}(x_1), \quad \text{with } \tilde{f}(x_1) = f([x_1, \varphi(x_1)])$$

First order ptimality conditions for \tilde{f} (without constraints since V_1 is an open set)

$$\tilde{f}'(x_1^{\star}) = 0 \Leftrightarrow \frac{\partial f}{\partial x_1}([x_1^{\star},\varphi(x_1^{\star})]) + \varphi'(x_1^{\star})\frac{\partial f}{\partial x_2}([x_1^{\star},\varphi(x_1^{\star})]) = 0.$$

$$y = -\frac{\partial_{x_2} f(x^*)}{\partial_{x_2} c_1(x^*)}$$

Exemple 1
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

 $C: \mathbb{R}^2 \longrightarrow \mathbb{R}$ $C(x) = 1|x||^2 - 1$
 D_a is the circle of center 0 and radius 1.

$$\inf_{x_1^2 + x_2^2 = 1} x_1^4 + x_2^4 = g(\mathcal{P})$$

Resolution by changing variables in polar coordinates Set $x_1 = \cos(\theta), x_2 = \sin(\theta)$, problem (4) becomes $\inf_{\theta \in [0,2\pi]} (\cos \theta)^4 + \sin \theta^4$ whose solution is obtained by finding the zero of the derivative:

$$4\cos\theta\sin\theta(-\cos\theta^2+\sin\theta^2)=-2\sin(2\theta)\cos(2\theta)=0,$$

4 local minima $(\pm \sqrt{2}/2, \pm \sqrt{2}/2)$, où f(x) = 1/2, 4 local maxima $\{(1,0), (0,1), (-1,0), (0,-1))\}$, où f(x) = 1.

Resolution using Lagrange multipliers

We seek $x^* \in \mathbb{R}^2$ and $y^* \in \mathbb{R}$ s. t.

- ◆ □ ▶ ◆ □ ▶ ◆ 三 ▶ ◆ □ ▶ ● の < @

Resolution using Lagrange multipliers

We seek $x^* \in \mathbb{R}^2$ and $y^* \in \mathbb{R}$ s. t.

$$(x_1^{\star})^2 + (x_2^{\star})^2 = 1$$

 $4(x_1^{\star})^3 + y^{\star}2x_1^{\star} = 0$
 $4(x_2^{\star})^3 + y^{\star}2x_2^{\star} = 0$

	$x_1^{\star} = 0$	$y^{\star} = -2(x_1^{\star})^2$
$x_2^{\star}=0$	$(x_1^{\star})^2 + (x_2^{\star})^2 \neq 1$	$(x_1^{\star})^2 = 1$ et $y^{\star} = -2$
		$f(x^{\star}) = 1$
$y^{\star} = -2(x_2^{\star})^2$	$(x_2^{\star})^2 = 1$ et $y^{\star} = -2$	$(x_1^{\star})^2 = (x_2^{\star})^2 = 1/2$ et $y^{\star} = -1$,
	$f(x^{\star}) = 1$	$f(x^{\star}) = 1/2$

Exemple 2 i) check that C quilified to
$$30 \times 30 \times 30^{2}$$
 the det that $x^{4} \exp(345)$
3) apply the LM theorem
 $D_{a} = \{x, x_{1} + x_{2} = 1\} = G$ re
Find $g(x) = \frac{1}{2} \langle Ax_{1} x \rangle + \langle b_{1} x \rangle + c$
inf $f(x) = 3x_{1}^{2} + 5x_{2}^{2} - 3x_{1}x_{2}, \quad C(x) = x_{1} + x_{2} - 1$
 $= (x_{a} - \frac{3}{2}x_{2})^{2} + 2x^{2} + (5 - \frac{3}{4})x_{2}^{2} \ge 0$ $\|x_{1} + x_{2} - 1\}$
 $\downarrow \text{ Lagrangian } \ell(x, y) = 3x_{1}^{2} + 5x_{2}^{2} - 3x_{1}x_{2} + y(x_{1} + x_{2} - 1)$
 $\downarrow \text{ is a polynomial of deepee 2: therefore the Taylor expension
 $\downarrow \text{ Lepea 2 is } 2 \times a \text{ of } 1 \times 7 + \frac{1}{2} \langle HP(0)x_{1}x_{2} \rangle$
 $\downarrow f(x) = f(0) + \langle VP(0)_{1}x_{2} + \frac{1}{2} \langle HP(0)x_{1}x_{2} \rangle$
 $\downarrow f(x) = (-3x_{a} + 10x_{2})$
 $\downarrow f(x) = (-3x_{a} + 10x_{2})$
 $\downarrow f(x) = f(6) + f(0)e + \frac{1}{2} f'(0)x^{2} + \frac{1}{6} f'(0)x^{3} + Gr(x^{3})$
 $\downarrow f(x) = f(6) + f(0)e + \frac{1}{2} f'(0)x^{2} + \frac{1}{6} f'(0)x^{3} + Gr(x^{3})$
 $\downarrow f(x) = f(6) + f(0)e + \frac{1}{2} f'(0)x^{2} + \frac{1}{6} f'(0)x^{3} + Gr(x^{3})$
 $\downarrow f(x) = f(6) + f(0)e + \frac{1}{2} f'(0)x^{2} + \frac{1}{6} f'(0)x^{3} + Gr(x^{3})$$

Exemple 2

Find

$$\inf_{C(x)=0} f(x) \quad f(x) = 3x_1^2 + 5x_2^2 - 3x_1x_2, \quad C(x) = x_1 + x_2 - 1 \quad \textbf{z} \bigcirc$$

Lagrangian $\ell(x, y) = 3x_1^2 + 5x_2^2 - 3x_1x_2 + y(x_1 + x_2 - 1)$ Gradient $\nabla \ell(x, y) = \begin{pmatrix} 6x_1^2 - 3x_2^2 + y^2 \\ -3x_1^2 + 10x_2^2 + y^2 \end{pmatrix} \stackrel{<}{=} \begin{pmatrix} \mathcal{O} \\ \mathcal{O} \end{pmatrix}$

Exemple 2

Find

$$\inf_{C(x)=0} f(x) \quad f(x) = 3x_1^2 + 5x_2^2 - 3x_1x_2, \quad C(x) = x_1 + x_2 - 1$$

Lagrangian $\ell(x, y) = 3x_1^2 + 5x_2^2 - 3x_1x_2 + y(x_1 + x_2 - 1)$ Gradient $\nabla \ell(x, y) = \begin{pmatrix} 6x_1 - 3x_2 + y \\ -3x_1 + 10x_2 + y \end{pmatrix}$ If $f(x^*) = \inf_{C(x)=0} f(x)$ then $\exists y^* \in \mathbb{R}$ s.t. $\nabla \ell(x^*, y^*) = 0$

Exemple 2

Find

$$\inf_{C(x)=0} f(x) \quad f(x) = 3x_1^2 + 5x_2^2 - 3x_1x_2, \quad C(x) = x_1 + x_2 - 1$$

- Lagrangian $\ell(x, y) = 3x_1^2 + 5x_2^2 3x_1x_2 + y(x_1 + x_2 1)$ Gradient $\nabla \ell(x, y) = \begin{pmatrix} 6x_1 3x_2 + y \\ -3x_1 + 10x_2 + y \end{pmatrix}$
- If $f(x^*) = \inf_{C(x)=0} f(x)$ then $\exists y^* \in \mathbb{R}$ s.t. $\nabla \ell(x^*, y^*) = 0$
- ▶ Plus the primal condition $C(x^*) = 0$

Exemple 2
$$3x_2 + y = 0$$
 to be solved as
 $-3x_4 + 40x_2 + y = 0$ exercise.
 $x_4 + x_2 = 1$

Solve the system of 3 equations to find x^*, y^*

Exemple 2 Alternatur method to minimize

$$f(x) \ge 3x_1^2 + 5x_2^2 - 3x_1x_2$$

 $D_a: \ge 2x_1 + x_2 = 1$
express $x_2 = 1 - x_1$ $g(x_1)$

lincon

- Solve the system of 3 equations to find x^* , *y*
- Other method ?

Second order optimality conditions $\nabla_{x} \ell(x, y^{*}) = O$ $H : H \ell(x, y^{*}) = A_{0} = J c(x)$

Let *f* and *c* in C^2 , and x^* be a local minimizer of *f* verifying the constraints of equality $c(x^*) = 0$. If the constraints are qualified, there exists a vector of Lagrange multipliers $y^* \in \mathbb{R}^m$ such that

$$\begin{array}{l} \langle s, H(x^*, y^*)s \rangle \geq 0 \quad \text{pour tout } s \in \mathcal{N} \\ \text{sit where} \\ \mathcal{N} = \{s \in \mathbb{R}^n, A(x^*)s = 0\}. \quad \text{linear opposition} \\ \text{observed} \\ \text{observed$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Interpretation of Lagrange multipliers

The Lagrange multiplier *y_i* measures the sensitivity of the minimum *x** with respect to the corresponding constraint. Initial primal and dual problems

$$f' = \inf_{c(x)=0} f(x) \qquad \sup_{y} g(y)$$
avec $g(y) = \inf_{x} f(x) + y^{t}c(x)$
Perturbated primal and dual problems
$$f(\varepsilon) = \inf_{c(x)=\varepsilon} f(x) \qquad \sup_{y} g(y) - \varepsilon^{T} y$$

$$F(\varepsilon) = \inf_{c(x)=\varepsilon} f(x) \qquad \sup_{y} g(y) - \varepsilon^{T} y$$

 \blacktriangleright x is the primal variable, ε a parameter

•
$$p^{\star}(\varepsilon)$$
 the optimal value when ε varies

Global interpretation of Lagrange multipliers

Hyp: strong duality for the undisturbed problem, that is y^* t.q. $g(y^*) = d^* = p^*(0)$ For the perturbated problem we have

$$egin{aligned} p^{\star}(arepsilon) &\geq & \max_{y} g(y) - arepsilon^{T} y \ &\geq & g(y^{\star}) - arepsilon^{T} y^{\star} \ &\geq & p^{\star}(0) - arepsilon^{T} y^{\star} \end{aligned}$$

ďoù

- ▶ if $y_i^* > 0$ and large, p^* increases a lot if $\varepsilon_i < 0$
- ▶ if $y_i^* < 0$ and large, p^* disminishes a lot if $\varepsilon_i > 0$

Local interpretation of Lagrange multipliers $p^{*}(\varepsilon) = uf f(x)$ $C: \mathbb{R}^{n} \to \mathbb{R}^{m}$ $C(x) = \varepsilon$

$$y_i^{\star} = -\frac{\partial p^{\star}(0)}{\partial \varepsilon_i}$$
 for $i = 1, \cdots, m$

Proof : $\varepsilon = te_i$ in the global sensitivity $p^*(te_i) \ge p^*(0) - ty_i^*$

$$\lim_{t \searrow 0} \frac{p^{\star}(te_i) - p^{\star}(0)}{t} \ge -y_i^{\star}$$
$$\lim_{t \nearrow 0} \frac{p^{\star}(te_i) - p^{\star}(0)}{t} \le -y_i^{\star}$$

Exemple 3 : Diagonalization of a symetric matrix $l/x, y = \chi + \chi + \chi (||x||^2 - 1) \quad y \in \mathbb{N}$ $\sqrt{l}(x, y) = 2Ax + 2yx$ $\inf_{\|x\|=1} \langle Ax, x \rangle$

with *A* a symetric matrix in $\mathbb{R}^{n \times n}$. $A \in S^{n}$

$$\inf_{c(x)=0} f(x) \quad \text{with } f(x) = \langle Ax, x \rangle \text{ and } c(x) = ||x||^2 - 1$$

$$\Im(x) = \Im(x) = \Im(x) = \Im(x) = 1 \quad \text{for ease}$$

- Existence of a minimum since *f* is continuous and {*x*, ||*x*|| = 1}
 bounded closed set.
- *f* differentiable and $\{c(x) = 0\}$ Lagrange multipliers $\Rightarrow \exists y^* \in \mathbb{R}$ s.t. $2Ax^* + 2y^*x^* = 0$ • $v \ge x^*$ $\partial = -y^*$ $\Rightarrow \exists (\lambda, v) \in \mathbb{R} \times \mathbb{R}^n$, $Av = \lambda v$ and $f(v) = \inf_{\|x\|=1} f(x)$. Recurrence hypothesis H_n : existence of a orthonormal eigenvector basis of A with n related eigenvalues n = 1 easy

if
$$\langle x^{\star}, x \rangle = 0$$
 then $\langle x^{\star}, Ax \rangle = \langle Ax^{\star}, x \rangle = \langle -y^{\star}x^{\star}, x \rangle = 0$

The restriction of *A* to *H* is a matrix $n \times n$ therefore using H_n existence of a orthonormal eigenvector basis of the restriction of *A* to *H*. We divide x^* by $||x^*||$ in order to complete this basis on \mathbb{R}^{n+1} .

Exemple 4 : Minimization of a quadratic function under linear constraints of equality $i \in \mathbb{R}^n \to \mathbb{R}^n$

$$f(x) = \frac{1}{2} \langle Ax, x \rangle + \langle b, x \rangle \qquad A \in S^{n} + c$$

$$c(x) = Bx - C$$

with *A* defined symetric positive matrix in $\mathbb{R}^{n \times n}$, *b* vector in \mathbb{R}^n , *B* matrix in $\mathbb{R}^{m \times n}$ and *C* vector in \mathbb{R}^m . Qualified constraints \Leftrightarrow rang(*B*) = *m*. Lagrangian :

$$\ell(x,y) = \frac{1}{2} \langle Ax, x \rangle + \langle b, x \rangle + \langle y, Bx - C \rangle$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

Utilisation : SQP algorithm -linear equality constraints

Let the minimization problem with linear equality constraints

$$\begin{cases} \inf f(x) \\ s.c. \quad Bx - c = 0 \\ x \in \mathbb{R}^n \end{cases} \quad \text{with} \quad \begin{cases} f: \mathbb{R}^n \longrightarrow \mathbb{R}, \text{ twice differentiable} \\ B \in \mathcal{M}_{m \times n}(\mathbb{R}), \\ c \in \mathbb{R}^m. \end{cases}$$

The Lagrangian is

$$\ell(x,y) = f(x) + \langle ay, Bx - c
angle$$

The 1st order optimality constrainst are

$$\nabla_{x}\ell(x,y) = \nabla f(x) + B^{T}y = 0_{\mathbb{R}^{n}}$$
$$\nabla_{y}\ell(x,y) = Bx - c = 0_{\mathbb{R}^{m}}$$

Let $G = \mathbb{R}^{n+m} \to \mathbb{R}^{n+m}$, $G(x, y) = \begin{pmatrix} \nabla f(x) + B^T y \\ Bx - c \end{pmatrix}$ and use the Newton method to find its zero in \mathbb{R}^{n+m}

SQP algorithm : Newton method in \mathbb{R}^{n+m} $G(x, y) = \bigwedge^{n} \begin{pmatrix} \nabla f(x) + B^{T}y \\ Bx - c \end{pmatrix} \quad JG(x, y) = \begin{pmatrix} Hf(x) & B^{T} \\ B & 0_{m \times m} \end{pmatrix}$ Newton method : $\begin{cases} x_{k+1} = x_{k} + d_{k} \\ y_{k+1} = y_{k} + \delta_{k} \end{cases}$ $JG(x_{k}, y_{k}) \begin{pmatrix} a_{k} \\ \delta_{k} \end{pmatrix} = -G(x_{k}, y_{k})$

Leads to

$$\begin{cases}
Hf(x_k)d_k + \nabla f(x_k) + B^T y_k + B^T \delta_k = 0 \simeq \nabla \xi(z) \\
Bd_k = 0
\end{cases}$$

Which is equivalent to solve

$$\inf_{Bd=0} \frac{1}{2} \langle Hf(x_k)d, d \rangle + \langle \nabla f(x_k) + B^T y_k, d \rangle = \langle \mathcal{J} \rangle$$

▲□▶▲□▶▲≣▶▲≣▶ ■ のへで

Algorithme SQP - linear equality constraints

At each iteration k, J know χ_{k} , Y_{k} $\blacktriangleright let h(d) = 1/1/4$

- $\blacktriangleright \text{ let } J_k(d) = \frac{1}{2} \langle Hf(x_k)d, d \rangle + \langle \nabla f(x_k) + B^T y_k, d \rangle$
- minimize $J_k(d)$ under constraint C(d) = Bd = 0 we shall 243 $\ell(d, \delta) = J_k(d) + \langle \delta, Bd \rangle$

 $\nabla_d \ell(d, \delta) = 0$ and Cd = 0 leads to the linear system

Algorithme SQP - linear equality constraints

3 pitfalls

- 1. $Hf(x^k)$ may be hard to compute : quasi-Newton approximation \hat{H}
- 2. \hat{H} may be not invertible : penalize with $\max(0, -\min(\lambda_{\hat{H}}) + \varepsilon)$
- **3.** $\nabla_{\delta}\ell(\delta, y)$ might not decrease -> line search for a better step

Algorithme SQP - linear equality constraints

Data: Function f, gradient ∇f , hessien Hf, tolerance τ , max number of iterations k_{max} **Result:** $f(x^*) = \min_{x \in \mathbb{R}^n} f(x)$ **Initialisation** : choose $x_0 \in \mathbb{R}^n$, $d_0 \in \mathbb{R}^n$ t.q. $||d_0|| > \tau$ while $||d^k|| \ge \tau$ and $k < k_{max}$ do Compute $f(x^k)$, $\nabla f(x^k)$ et $Hf(x^k)$ Minimize $J_k(d) = \frac{1}{2} \langle Hf(x_k)d, d \rangle + \langle \nabla f(x_k) + B^T y_k, d \rangle$ under constraints $Bd = 0 \rightarrow find d^*$ and δ^* Update $d_k = d^{\star}$, Update $x^{k+1} = x^k + d^*$, $y^{k+1} = y^k + \delta^*$ Update $k \leftarrow k + 1$ end

 $x^{\star} = x_k$

