Exercice

$$
f(x)=3 x_{1}^{2}+x_{2}^{2}-2 x_{1} x_{2}+x_{1}+x_{2}+1
$$

wroth in the quadratic form A, b, c

$$
\begin{aligned}
& \text { Connection: } \\
& \nabla f(x)=\binom{6 x_{1}-2 x_{2}+1}{2 x_{2}-2 x_{1}+1} \quad H f(x)=\left(\begin{array}{cc}
6 & -2 \\
-2 & 2
\end{array}\right)=d e=A \\
& f(x)=f(0)+\langle\nabla \rho(0), x\rangle+\frac{1}{2}\langle H f(0) x, x\rangle+0 \\
& =\underset{\substack{11 \\
c}}{1}\left\langle x,\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\right\rangle+\frac{1}{2}\langle\text { Ax, } x\rangle \\
& \operatorname{dr}(A-\lambda I)^{c}=(6-\lambda)\left(2^{b}-\lambda\right)-4=\lambda^{2}-8 \lambda+8= \\
& A \in S^{n}++\Rightarrow A x^{y}+b=0 \quad \Delta=\quad \lambda=\frac{8 \pm 4 \sqrt{2}}{2}>0
\end{aligned}
$$ has a unique solution. which is she gldsel minimum of $f^{2}\left(\frac{-1}{2},-1\right)=x^{*}$

Exercife $\mathbb{R}^{2} \rightarrow \mathbb{R}$

$$
f\left(x_{1}, x_{2}=4\left(x_{1}^{2}+x_{2}^{2}\right)-\left(x_{1}^{2}+x_{2}^{2}\right)^{2} \quad X=\left(x_{1}, x_{2}\right)\right.
$$

1) Compure $\nabla f(x)$ and $H P(x)$
2) Computa the ser of points $\{\nabla f(x)=0\}=S$
3) Sany if $x \in S$ is minimum or maxima

$$
\frac{\text { question } 3 f(\text { fomorow }}{z=\|x\|^{2}, f(x)=4 z-z^{2}}
$$

$$
\begin{aligned}
& \nabla f(x)=\binom{8 x_{1}-4 x_{1}\left(x_{1}^{2}+x_{2}^{2}\right)}{8 x_{2}-4 x_{2}\left(x_{1}^{2}+x_{2}^{2}\right)} \text { what ? } H(x)=\left(\begin{array}{ll}
8-12 x_{1}^{2}-4 x_{2}^{2} & -8 \& x_{2} \\
-8 x_{2} x_{2} & 8-12 x_{2}^{2}-4 x_{1}^{2}
\end{array}\right. \\
& \binom{2 x_{1}=x_{1}\left(x_{1}^{2}+x_{2}^{2}\right)}{2 x_{2}=x_{2}\left(x_{1}^{2}+x_{2}^{2}\right)} \Leftrightarrow S=\{(0,0)\} \cup\left\{\begin{array}{l}
x_{1}^{2}+x_{2}^{2}=2 \\
\text { irch of coutel(} 600 \\
\text { 2adiun } \sqrt{2}
\end{array}\right\}
\end{aligned}
$$

Outline

Course goals and terms
Introduction to Optimization

Reminders: Differential calculus

Convexity
Convex sets
Convex functions
Unconstrained optimisation
Optimality conditions in the unconstrained case Solving systems of non linear equations
Descent methods
Non-linear least squares
Optimisation with constraints
Duality
Algorithms for constrained optimization

Canonical problem

$$
\left\{\begin{array}{l}
\text { inf } \quad f(x) \\
\text { cs.c. } \left.c^{E} x\right)=0 \quad \text { equality constraints } \\
\text { s.c.c. } c^{\prime}(x) \leq 0 \quad \text { inequality } \\
\\
x \in \mathbb{R}^{n}
\end{array}\right.
$$

with

$$
\begin{array}{rll}
f & : & \mathbb{R}^{n} \longrightarrow \mathbb{R}, \\
c^{E} & : & \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}, \quad m \text { eq. countionts } \\
c^{\prime} & : & \mathbb{R}^{n} \longrightarrow \mathbb{R}^{p}, \\
f & c & p \text { inced. const. } \\
& c & \text { smooth. }
\end{array}
$$ adninsitble do main

$$
D_{a}=\left\{x \in \mathbb{R}^{n}, c^{E}(x)=0, c^{\prime}(x) \leq 0\right\}
$$

General existence theorem

$$
\inf _{x \in \mathbb{D}_{a}} f(x)
$$

if $D_{a}=C, f$ continuous
We consider f continuous from $C \subset \mathbb{R}^{n}$ into \mathbb{R} with C closed. If one of the following hypotheses is satisfied

- C bounded
- C not bounded and f coercive

$$
\begin{aligned}
& f(x) \longrightarrow+\infty \\
& \text { exaurgle } f(x)=\|x\|^{2}
\end{aligned}
$$

then f has a minimum on C

$$
\begin{aligned}
& C^{E}: \mathbb{R}^{n} \rightarrow \mathbb{Q}_{2}^{m} \\
& C^{I}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}
\end{aligned} \quad C^{E}=\left(C_{i}^{E}\right)_{i=1, \ldots m} \quad C_{i}^{E}: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

Notations for the gradient and the hessian of the $i^{\text {th }}$ constraint

$$
\begin{array}{r}
a_{i}^{E}(x)=\nabla c_{i}^{E}(x) \quad H_{i}^{E}(x)=\operatorname{Hess} c_{i}^{E}(x), \\
a_{i}^{\prime}(x)=\nabla c_{i}^{\prime}(x) \quad H_{i}^{\prime}(x)=\operatorname{Hess} c_{i}^{\prime}(x) .
\end{array}
$$

Jacobian Matrices of the constraints :

$$
A^{E}(x)=\nabla c^{E}(x)=\left(\begin{array}{c}
a_{1}^{E}(x)^{T} \\
\vdots \\
a_{m}^{E}(x)^{T}
\end{array}\right), \quad A^{\prime}(x)=\nabla c^{\prime}(x)=\left(\begin{array}{c}
a_{1}^{\prime}(x)^{T} \\
\vdots \\
a_{p}^{\prime}(x)^{T}
\end{array}\right)
$$

Lagrangian and Lagrange multipliers
(P) diredt or primal protlan

(P)

Let y a vector of \mathbb{R}^{m}, z a vector of \mathbb{R}^{p}, Lagrange multipliers.
The Lagrangien is defined by
$\ell: \mathbb{R}^{n} \times \mathbb{R}^{m} \times \mathbb{R}^{\boldsymbol{P}} \rightarrow \mathbb{R}$

$$
\ell(x, y, z)=f(x)+\left\langle\sum_{i}, c_{m}^{E}(x)\right\rangle+\left\langle z, c^{\prime}(x)\right\rangle \sum_{j=1}^{p} z_{j} c_{j}^{I}(x)+c_{j}^{I}(x)
$$

The gradient and the hessian of the Lagrangienwith respect to

$$
\begin{aligned}
& x \text { are } \\
& g(x, y, z)=\nabla_{x} \ell(x, y, z)=\nabla f(x)+\sum_{i=1}^{m} y_{i} \nabla c_{i}^{E}(x)+\sum_{i}^{E} z_{j} \nabla c_{j}^{\top}(x)+\sum_{i=1}^{p} z_{i} a_{i}^{\prime}(x)
\end{aligned}
$$

$$
H(x, y, z)=\operatorname{Hess}_{x} \ell(x, y, z)=H f(x)+\sum_{i=1}^{m} y_{i} H_{i}^{E}(x)+\sum_{i=1}^{p} z_{i} H_{i}^{\prime}(x)
$$

Example 1: $f: \mathbb{R}^{2} \rightarrow \mathbb{R} \quad f(x)=x_{1}+x_{2}, \inf _{\mathcal{C}_{1}^{2}+x^{2}=2} f(x), \mathbb{R} \rightarrow \mathbb{R} \quad m=1, p=0$

$$
\begin{aligned}
& C^{E}: \mathbb{R}^{2} \rightarrow \mathbb{R} \quad m=1, p=0 \\
& C^{E}(x)=x_{1}^{2}+x_{2}^{2}-2 \quad C^{E}(x)=0 \\
& l: \mathbb{R}^{2} \times \mathbb{R} \longrightarrow \mathbb{R} \\
& l(x, y)=f(x)+y C^{E}(x)=x_{1}+x_{2}+y\left(x_{1}^{2}+x_{2}^{2}-2\right) \\
& \nabla_{x} l(x, y)=\binom{1}{1}+y\binom{2 x_{1}}{2 x_{2}}=\binom{1+2 y x_{1}}{1+2 y_{2}} \\
& H_{2} l(x, y) € M_{2 x_{2}}(\mathbb{R}) ; f_{x} C(x, y)=\left(\begin{array}{cc}
2 y & 0 \\
0 & 2 y
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& m=0, p=n-1 \\
& l: \mathbb{R}^{n} \times \mathbb{R}^{p} \rightarrow \mathbb{R} \\
& l(x, z)=f(x)+\left\langle z, C^{I}(x)\right\rangle \\
& =\|x\|^{2}+\sum_{j=1}^{n-1} z_{j}\left(x_{j+1}-x_{j}-2\right)=\|x\|^{2} \\
& C^{\tau}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}=\mathbb{R}^{n-1} \\
& \begin{array}{ll}
\\
x & \left.x_{2}-x_{1}-2\right)
\end{array}
\end{aligned}
$$

each f_{i} is concave

$$
\begin{gathered}
f(\lambda x+(1-\lambda) y) \geqslant \lambda f(x) \\
+(1-\lambda) g(y) \\
g(x)=\min _{i=1,1} f(x)
\end{gathered}
$$

g is concave $\left(f_{i}(x)\right)$ family of $\left(f_{i}(x)\right)_{i \in T} f i c_{\text {concave fern }}$
generalize to any uncountable family $(f(x, p))_{p \in C}$ when $f(x, p)$ is then $g(x)=\min _{p \in C} f(x, p)$ is concave

Actives Constraints / Contraintes actives in the case.
Let x^{\star} a minimizer of f. of inequality constraint. The $i^{\text {th }}$ inequality constraint is active if $c_{i}^{\prime}\left(x^{\star}\right)=0$.
inf $f(x)=f\left(x^{*}\right) \quad x^{*} \in \mathcal{D}_{a}=\left\{c^{\star}(x)=0, c_{2}^{T}(x) \leq 0\right\}$
$C^{I}(x) \leq 0 \quad$ possibly, $c^{E}(x)=0 \Rightarrow C^{3}\left(x^{*}\right)=0 \quad \underbrace{c^{5}\left(x^{*}\right) \leq 0}$

$$
\begin{array}{ccc}
C_{j}^{I}\left(x^{*}\right) \leqslant 0 & j=1, \ldots, p \\
C_{j}^{T}\left(x^{*}\right)=0 & \text { or } & C_{j}^{I}\left(x^{*}\right)<0 \\
\downarrow
\end{array}
$$

$\ddagger \downarrow$
$C_{j}^{\frac{1}{2}}$ active at $x^{*} \quad C_{j}^{\frac{5}{j}}$ is inactive at x^{*}

Actives Constraints / Contraintes actives

$$
\begin{aligned}
& g^{\prime}(0)=\{(0,0)\} \\
& f^{-1}(l)=\text { aid }
\end{aligned}
$$

Let x^{\star} a minimizer of f.
The $i^{\text {th }}$ inequality constraint is active if $c_{i}^{\prime}\left(x^{\star}\right)=0$.

1. $f: \mathbb{R}^{2} \rightarrow \mathbb{R} \quad f(x)=\|x\|^{2}, \inf _{x_{1}+x_{2} \leq 1} f(x)$

$$
c^{I}: \mathbb{R}^{2} \longrightarrow \mathbb{R} \longrightarrow x_{1}
$$

In green or scend example
Actives Constraints / Contraintes actives
Let x^{\star} a minimizer of f.

$$
\begin{aligned}
c^{I}: \mathbb{R}^{2} & \rightarrow \mathbb{R}^{2} \\
x & \longmapsto\binom{x_{1}+x_{2}+1}{x_{2}}
\end{aligned}
$$

The $i^{\text {th }}$ inequality constraint is active if $c_{i}^{\prime}\left(x^{\star}\right)=0$.

Lagrange dual function
x primal variable inf $f(x)$ - problem
y, z dual variable
$g: \mathbb{R}^{m} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$
proof:

$$
\begin{aligned}
& m \times \mathbb{R}^{p} \rightarrow \mathbb{R} \\
& g(y, z)=\inf _{x \in D_{a}}\left((x, y, z) \leqslant \ell(x)+\left\langle y_{1}\left(x^{*}, y, z\right) \leqslant p^{*}(x)\right\rangle+\left\langle z, c^{\mathcal{*}}(x)\right\rangle\right) \\
&=\inf _{x \in D_{a}}\left(f(x)+\sum_{i=1} y_{i} c_{i}^{E}(x)+\sum_{i=1}^{p} z_{i} c_{i}^{\prime}(x)\right)
\end{aligned}
$$

g is concave (can be unbounded for some y, z)
Property : inferior bound:

$$
\text { If } z \geq 0 \text { then } g(y, z) \leq p^{\star}=\inf _{x \in D_{a}} f(x)=f\left(x^{*}\right)
$$

\rightarrow an affine function is beth convex and concave
\rightarrow for fled $x \quad(y, z) \longmapsto f(x)+\left\langle y, L^{\varepsilon}(x)>+\left\langle j, c^{\top}(x)\right\rangle\right.$ concave in y, z

Exemple : solution of a linear system with minimal norm $\quad A \in \mu_{m \times n}(\mathbb{R}) \quad b \in \mathbb{R}^{m}$

Solve
$p^{\star}=\inf _{A x=b} x^{T} x=\|x\|^{2} P$ Binal problem

$$
\begin{gathered}
C^{E}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \\
C^{E}(x)=A x-b
\end{gathered}
$$

- Lagrangian : $\ell(x, y)=x^{\top} x+y^{\top}(A x-b)$ $=\|\mid x\|^{2}+\left\langle y_{1} C^{E}(x)\right\rangle$ corcive

$\nabla_{x} \ell(x, y)=2 x+A^{\top} y$
$g(y)=\frac{1}{4}\left\langle A^{\top} y, A^{\top} y\right\rangle+\left\langle y,-\frac{1}{2} A A^{\top} y-b\right\rangle=-\frac{1}{4}\left\|A^{\top} y\right\|^{2}-\left\langle y_{b}, b\right\rangle$
$g(y) \leqslant p^{*} \quad \forall y$ moreover
$g(y)$ is concave we am computrics maximum valve

Exemple : solution of a linear system with minimal norm
 Solve

$$
p^{\star}=\inf _{A x=b} x^{\top} x
$$

- Lagrangian: $\ell(x, y)=x^{\top} x+y^{\top}(A x-b)$
- In order to minimize $\ell(x, y)$ with respect to x we seek gradient zeros

$$
\nabla_{x} \ell(x, y)=2 x+A^{T} y=0 \Leftarrow x=-A^{T} y / 2
$$

Exemple : solution of a linear system with minimal norm
 Solve

$$
p^{\star}=\inf _{A x=b} x^{\top} x
$$

- Lagrangian: $\ell(x, y)=x^{\top} x+y^{\top}(A x-b)$
- In order to minimize $\ell(x, y)$ with respect to x we seek gradient zeros

$$
\nabla_{x} \ell(x, y)=2 x+A^{T} y=0 \Leftarrow x=-A^{T} y / 2
$$

- Inject in the definition of the dual function

$$
g(y)=\ell\left(-A^{T} y / 2, y\right)=-\frac{1}{4} y^{T} A A^{T} y-b^{T} y
$$

concave in y

Exemple : solution of a linear system with minimal norm
 Solve

$$
p^{\star}=\inf _{A x=b} x^{\top} x
$$

- Lagrangian: $\ell(x, y)=x^{\top} x+y^{\top}(A x-b)$
- In order to minimize $\ell(x, y)$ with respect to x we seek gradient zeros

$$
\nabla_{x} \ell(x, y)=2 x+A^{T} y=0 \Leftarrow x=-A^{T} y / 2
$$

- Inject in the definition of the dual function

$$
g(y)=\ell\left(-A^{T} y / 2, y\right)=-\frac{1}{4} y^{T} A A^{T} y-b^{T} y
$$

concave in y

- Inferior bound property

$$
p^{\star} \geq-\frac{1}{4} y^{\top} A A^{T} y-b^{T} y \forall y
$$

Resolution of the dual problem
sing $g(y, z) \leqslant p^{*}$ for all y, z $d^{*}=\sup _{y, z \geq 0} g(y, z) \leqslant p^{*}$
Solve

$$
d^{\star}=\sup _{y \in \mathbb{R}^{m}, z \in \mathbb{R}^{p}, z \geq 0} g(y, z)
$$

- Best inferior bound for $p^{\star} \geq d^{\star}$
- The dual problem is concave : existence of an optimal problem d^{\star}
Weak duality $d^{\star} \leq p^{\star}$
Strong duality ${d^{\star}=p^{\star}}^{\text {many }}$ hypothesis an eusure shone duality
Slater qualification of constants
- Condition for $d^{\star}=p^{\star}$
- We say that the constraints are qualified in x^{\star} if the rank of the matrix formed by the union of the Jacobian matrix of equality constraints and the Jacobian matrix of q constraints of active inequality in x^{\star} is equal to $m+q$, then called maximal rank.
- Particular case of a convex problem : Solve f ensued C^{\perp}, con α if there exist
$p^{\star}=\inf _{\substack{ \\A x=b \\ c^{\prime}(x) \leq 0}} f(x) \quad$ if $x \in D_{a}$

If $\exists x$ s.t. $c^{\prime}(x)<0$ and $A x=b$ then $d^{\star}=p^{\star}$

Case of equality constraints
C qualified \Leftrightarrow

$$
\text { Rank } J C\left(x^{*}\right)=m
$$

c affine

$$
\left\{\begin{array}{lc}
\text { inf } & f(x) \\
\text { s.c. } & C(x)=0 \\
& x \in \mathbb{R}^{n}
\end{array}\right.
$$

with

$$
\begin{array}{rll}
f & : & \mathbb{R}^{n} \longrightarrow \mathbb{R}, \\
C & : & \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}, \\
f & c & \text { smooth. }
\end{array}
$$

Théorème de extrema liés - Lagrange multipliers

$$
\text { Primal Pb: } x^{*}=\min _{x \in \mathbb{D}_{a}} f(x)\{\{x, c(x)=0\}
$$

Let f and C in C^{1}, and x^{\star} a local minimizer of f satisfying

$$
\begin{aligned}
& \mathcal{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{C} C\left(x^{\star}\right)=0 \text { primal feasability } \\
& C: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
\end{aligned}
$$

If the constraints are qualified, there exists a vector of Lagrange multipliers $y^{\star} \in \mathbb{R}^{m}$ s. t. $\quad \nabla_{x} l\left(x^{*}, y^{*}\right)=0_{\mathbb{R}^{n}}$
$\mid \nabla f\left(x^{\star}\right)+\sum_{i=1}^{m} y_{i}^{\star} \nabla C_{i}\left(x^{\star}\right)=0$ dual feasability
$\left.\begin{array}{ll} & \text { Look for }\left(x^{*}, y^{*}\right) \text { such the nt } \\ \text { - Linear constraints special case } \\ -n=2, m=1 \text { special case } \quad x \in \mathbb{R}^{a}, y \in \mathbb{R}^{m}\end{array} \right\rvert\, \begin{aligned} & \bar{r}_{x}\left(\left(y^{x}, y^{x}\right)=O_{\mathbb{R}^{n}}\right.\end{aligned}$

