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Outline
Course goals and terms

Introduction to Optimization

Reminders : Differential calculus

Convexity
Convex sets
Convex functions

Unconstrained optimisation
Optimality conditions in the unconstrained case
Solving systems of non linear equations
Descent methods

Non-linear least squares

Optimisation with constraints
Duality
Algorithms for constrained optimization
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Canonical problem

8
>><
>>:

f (x)
s.c. cEx) = 0
s.c. cI(x)  0

x 2 Rn

with

f : Rn �! R,

cE : Rn �! Rm,

cI : Rn �! Rp,

f c smooth.

Da = {x 2 Rn, cE(x) = 0, cI(x)  0}
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General existence theorem

We consider f continuous from C ⇢ Rn into R with C closed. If
one of the following hypotheses is satisfied
I C bounded
I C not bounded and f coercive

then f has a minimum on C
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Notations for the gradient and the hessian of the i th constraint

aE
i (x) = rcE

i (x) HE
i (x) = Hess cE

i (x),

aI
i (x) = rcI

i (x) HI
i (x) = Hess cI

i (x).

Jacobian Matrices of the constraints :

AE(x) = rcE(x) =

0
B@

aE
1 (x)T

...
aE

m(x)T

1
CA , AI(x) = rcI(x) =

0
B@

aI
1(x)T

...
aI

p(x)T

1
CA
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Lagrangian and Lagrange multipliers

Let y a vector of Rm, z a vector of Rp, Lagrange multipliers.
The Lagrangien is defined by

`(x , y , z) = f (x) + hy , cE(x)i+ hz, cI(x)i

The gradient and the hessian of the Lagrangienwith respect to
x are

g(x , y , z) = rx`(x , y , z) = rf (x) +
mX

i=1

yiaE
i (x) +

pX

i=1

ziaI
i (x)

H(x , y , z) = Hessx`(x , y , z) = Hf (x) +
mX

i=1

yiHE
i (x) +

pX

i=1

ziHI
i (x)
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Example 1: f : R2 ! R f (x) = x1 + x2, inf
x2

1 +x2=2
f (x)
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Example 2: f : Rn ! R f (x) = ||x ||2, inf
xi+1 � xi  2

i = 1, . . . , n � 1

f (x)
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Examples
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Actives Constraints / Contraintes actives
Let x? a minimizer of f .
The i th inequality constraint is active if cI

i (x
?) = 0.

1. f : R2 ! R f (x) = ||x ||2, inf
x1+x21

f (x)

2. f : R2 ! R f (x) = ||x ||2, inf
x1+x2�1

f (x)
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Lagrange dual function

g : Rm ⇥ Rp ! R

g(y , z) = inf
x2Da

`(x , y , z)

= inf
x2Da

 
f (x) +

mX

i=1

yicE
i (x) +

pX

i=1

zicI
i (x)

!

g is concave (can be unbounded for some y ,z)
Property : inferior bound:
If z � 0 then g(y , z)  p? = infx2Da f (x)
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Exemple : solution of a linear system with minimal
norm

Solve

p? = inf
Ax=b

xT x

I Lagrangian : `(x , y) = xT x + yT (Ax � b)

I In order to minimize `(x , y) with respect to x we seek
gradient zeros

rx`(x , y) = 2x + AT y = 0 ( x = �AT y/2

I Inject in the definition of the dual function

g(y) = `(�AT y/2, y) = �1
4

yT AAT y � bT y

concave in y
I Inferior bound property

p? � �1
4

yT AAT y � bT y 8y
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Resolution of the dual problem

Solve

d? = sup
y2Rm,z2Rp,z�0

g(y , z)

I Best inferior bound for p? � d?

I The dual problem is concave : existence of an optimal
problem d?

Weak dualityd?  p?

Strong duality d? = p?
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Qualified constraints

I Condition for d? = p?

I We say that the constraints are qualified in x?

if the rank of the matrix formed by the union of the
Jacobian matrix of equality constraints and the Jacobian
matrix of q constraints of active inequality in x? is equal to
m + q, then called maximal rank.

I Particular case of a convex problem :
Solve

p? = inf
Ax = b

cI(x)  0

f (x)

If 9x s.t. cI(x) < 0 and Ax = b then d? = p?
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Case of equality constraints

8
<
:

inf f (x)
s.c. C(x) = 0

x 2 Rn

with

f : Rn �! R,

C : Rn �! Rm,

f c smooth.
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Théorème des extrema liés - Lagrange multipliers

Let f and C in C1, and x? a local minimizer of f satisfying

C(x?) = 0 primal feasability

If the constraints are qualified, there exists a vector of Lagrange
multipliers y? 2 Rm s. t.

rf (x?) +
mX

i=1

y?
i rCi(x?) = 0 dual feasability

I Linear constraints special case
I n = 2, m = 1 special case
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