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Conjugate gradient method : motivation

f (x⇤) = inf
x2Rn

f (x)

f (x) =
1
2
(↵1x2

1 + ↵2x2), with 0 < ↵1 < ↵2

=
1
2
hAx , xi with A =

✓
↵1 0
0 ↵2

◆
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A-conjugate directions

Definition : Let A 2 Sn
++.

I 2 non zero vectors v , w are called A�conjugate iff
hAv ,wi = 0.

I A family of non zero vectors (vi)i=1,...m, is called
A�conjugate iff hAvi , vji = 0 for all i = 1, . . . ,m,
j = 1, . . . ,m, i 6= j .

Property : A�conjugate vectors are linearly independent. If
m = n a A�conjugate family is a basis of Rn.
Definition : a conjugate descent method is a method where the
successive descent directions form a A�conjugate family
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Expression of the minimum of f in a A�conjugate
basis

f (x) =
1
2
hAx , xi+ hb, xi

Suppose we have a basis (di)i=1,...n, such that hAdi , dji = 0 for
j 6= i

x? =
nX

i=1

↵i di , and Ax? + b = 0,

therefore Ax? = �b =
nX

i=1

↵iAdi , then for any j = 1, . . . , n

�hb, dji =
nX

i=1

↵ihAdi , dji = ↵jhAdj , dji

↵j =
�hb, dji
hAdj , dji
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Construction of the A�conjugate basis

Let gk = rf (xk ) = Axk + b be the gradient at step k
Choose d0 = �g0 (The first step is a standard gradient descent
step)
Then dk = �gk�1 + �k�1dk�1 satisfying:
(CG1) hAdk , dji = 0 for j = 0, . . . , k � 1 and
(CG2) hgk , dji = 0 for j = 0, . . . , k � 1
Update at step k : xk+1 = xk + ↵kdk
Next gradient gk+1 = Axk+1 + b = gk + ↵kAdk
Property : For all initial guess x0 there exists (↵k )k and (�k )k
such that (CG1) and (CG2) are satisfied.
Property : (CG1) and (CG2) ) hgk , gji = 0 for j 6= k
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Convergence of a conjugate method

Property : A conjugate descent method using directions
satisfying conditions (CG1) and (CG2) converges in at most n
steps.

Property : �k = � hAdk�1, gk i
hAdk�1, dk�1i

=
||gk ||2

||gk�1||2
.

Property : ↵k = � hgk , dk i
hAdk , dk i

183

Postel



Conjugate gradient algorithm
Data: Matrix A, vector b, tolerance "
Result: x? such that f (x?) = minx f (x)
Initialisation : k = 0,
Initial guess for solution x0 2 Rn

g0 = Ax0 + b
d0 = �g0

while ||gk || > " do
I Compute directionnal minimum :

vk = Adk

↵k = �
hgk , dk i
hvk , dk i

xk+1 = xk + ↵k dk

I Update gradient :
gk+1 = gk + ↵k vk

I Compute new direction :

�k+1 =
hgk+1, gk+1i
hgk , gk i

dk+1 = �gk+1 + �k+1dk

k  k + 1
end
x?  xk
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Monotonicity of the conjugate gradient algorithm

Property : If dk 6= 0 and ↵k+1 6= 0 then f (xk+1) < f (xk ).
If ↵k+1 = 0, xk is the minimizer of f and Axk + b = 0
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Polak-Ribière method

Data: Function f , gradient rf , tolerance "
Result: x? such that f (x?) = minx f (x)
Initialisation : k = 0,
Initial guess for x0 2 Rn

g0 = rf (x0)
d0 = �g0

while ||gk || > " and k < kmax do
I Compute the step in direction dk :

f (xk + ↵k dk )  f (xk + ↵dk ) < f (xk ) for all 0 < ↵  ↵k
I Compute new position :

xk+1 = xk + ↵k dk

I Compute new direction :
gk+1 = rf (xk+1)

ck+1 =
hgk+1 � gk , gk+1i

hgk , gk i
dk+1 = �gk+1 + ck+1dk

k  k + 1
end
x?  xk
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Comparaison of conjugate Gradient (green, 4
steps)and Polak-Ribière (red, 8 steps) methods.

f quadratic function in R5. Projection on (0, x1, x2).
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Linear regression

Find ✓ defining a linear model

ŷ = h✓(x) = ✓T .x

Let m measurements (xi , yi), i = 1, . . . ,m, where explaining
variables are in Rn (xi = (xj

i )j=1,...,n. ✓ is found by minimizing
the least squared error

E(✓) =
1
m

mX

i=1

⇣
✓T .xi � yi

⌘2
.

The normal equation gives the best solution

✓̂ = (X T .X )�1.X T .y

complexity in O(n3) and O(m).
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Outline
Course goals and terms

Introduction to Optimization

Reminders : Differential calculus

Convexity
Convex sets
Convex functions

Unconstrained optimisation
Optimality conditions in the unconstrained case
Solving systems of non linear equations
Descent methods

Non-linear least squares

Optimisation with constraints
Duality
Algorithms for constrained optimization
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Nonlinear least squares

f :
⇢

RP ! RQ

x = (x1, . . . , xP)
t 7! (f1(x), . . . , fQ(x))t

for Q > P we seek a solution to the problem f (x) = 0.
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Examples

I Find a line that passes through Q points with Q > 2

I Find the parameters N0 and � of a radioactive material
whose emissions are monitored over time N(t) = N0e��t
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Examples

I Find a line that passes through Q points with Q > 2

I Find the parameters N0 and � of a radioactive material
whose emissions are monitored over time N(t) = N0e��t
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Toy example

f : R2 ! RQ with Q large
(Ni)i=1,...,Q radioactivity measurements at times (ti)i=1,...,Q

f (x) =

0

BBB@

f1(x)
f2(x)

...
fQ(x)

1

CCCA
=

0

BBB@

x1e�x2t1 � N1
x1e�x2t2 � N2

...
x1e�x2tQ � NQ

1

CCCA
.

Calculate the Jacobian matrix Jf (x)
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Toy example

f : R2 ! RQ with Q large
(Ni)i=1,...,Q radioactivity measurements at times (ti)i=1,...,Q

f (x) =

0

BBB@

f1(x)
f2(x)

...
fQ(x)

1

CCCA
=

0

BBB@

x1e�x2t1 � N1
x1e�x2t2 � N2

...
x1e�x2tQ � NQ

1

CCCA
.

Calculate the Jacobian matrix Jf (x)

Jf (x) =

0

BBB@

e�x2t1 �x1t1e�x2t1

e�x2t2 �x1t2e�x2t2

...
e�x2tQ �x1tQe�x2tQ

1

CCCA
.
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Reminders: linear least squares

Ax = b for b 2 RQ and A 2 MQ,P(R) with Q > P and
rg(A) = P.
The problem: find x 2 RP such that

kAx � bk2 = min
y2RP

kAy � bk2

admits a unique solution given by the normal equation

AtAx = Atb.
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Nonlinear case

8
><

>:

Find x⇤ 2 RP such that

kf (x⇤)k2 = min
x2RP

kf (x)k2

 
kf (x)k2 =

QX

k=1

(fk (x))2

!
,

We suppose that :

8x 2 RP , Jf (x) 2 MQ,P(R) has rank P.

In particular, we will have (Jf (x))
t Jf (x) symmetric defined

positive.

204

Postel



Nonlinear case (continued)

We notice
g :

⇢
RP ! R

x 7! kf (x)k2

If g is strictly convex and coercive then the problem
g(x⇤) = minx g(x) admits a unique solution x⇤

rg(x⇤) = 0.
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Calculating the gradient of g

g = Nof composition of
N : RQ ! R, N(y) = ||y ||2 and f : RP ! RQ.
The rule for differentiating a composite function gives
Dg(x) = DN(f (x))Df (x)
For y , � 2 RQ, DN(y)� = h2y , �i
for x , h 2 RP , Df (x)h = Jf (x)h 2 RQ

h, x 2 RP , Dg(x)h = h2f (x), Jf (x)hi = h2Jf (x)T f (x), hi

rg(x) = 2Jf (x)T f (x).
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Find the zeros of rg or the zeros of f (x)

I rg(x) = 2Jf (x)T f (x) Newton method requires Hf (x)
I If f (x) is a function of RP in RP we find the zeros by

Newton’s algorithm

xk+1 = xk + dk

with Jf (xk )dk = �f (xk ).

I Here f (x) is a function of RP in RQ so the system
Jf (xk )dk = �f (xk ) of size Q ⇥ P is solved in the least
squares sense

Jf (xk )
T Jf (xk )dk = �Jf (xk )

T f (xk )

, dk = �(Jf (xk )
T Jf (xk ))

�1Jf (xk )
T f (xk ).
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Gauss Newton method

I Initialize x0 2 RP

I While ||f (xk )|| > " and k < kmax

I Solve (Jf (xk )T Jf (xk ))dk = �Jf (xk )T f (xk )
I Update xk+1 = xk + dk
I Update k ! k + 1
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Convergence of the Gauss Newton method

We recall that Jf (x) of rank P and g(x) is strictly convex
coercive
I Let xk 2 RP , then the direction

dk = �(Jf (xk )
T Jf (xk ))

�1Jf (xk )
T f (xk ) satisfies

hrg(xk ), dk i  0.

If xk 6= x⇤ then

hrg(xk ), dk i < 0.

So dk is a descent direction for g at xk .
I If the sequence (xk )k converges, then its limit is x⇤.
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Exercice
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Exercice
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