$$
f(x)=4 x_{1}^{2}+2 x_{1} x_{2}+5 x_{2}^{2}+x_{1}+3 x_{2}
$$

1) Wite thi taylor eapansion at $\binom{0}{0}$ of order 2

$$
\begin{aligned}
& f(x)=f\binom{0}{0}+2 \nabla f((0)), x>+\frac{1}{2}\left\langle H\left(f_{0}^{0} 0\right) x, x\right\rangle+\sigma\left(\|x\|^{2}\right) \\
& \nabla f(x)=\binom{8 x_{1}+2 x_{2}+1}{2 x_{1}+10 x_{2}+3} \quad H f(x)=\left(\begin{array}{cc}
8 & 2 \\
2 & 10
\end{array}\right) \\
& \begin{array}{r}
\operatorname{der}(H f(x)-\lambda I)=(8-\lambda)(10-\lambda)-4=\lambda^{2}-18 \lambda-4 \\
\Delta=18^{2}-16>0
\end{array} \\
& \nabla f\binom{0}{0}=\binom{1}{3} \quad H f\binom{0}{0}=\left(\begin{array}{cc}
2 & 2 \\
2 & 10
\end{array}\right) \\
& a_{i}=\frac{18 \pm \sqrt{D}}{2}>0 \\
& \left.f(x)=0+\left\langle\begin{array}{l}
1 \\
3
\end{array}\right), x\right\rangle+\frac{1}{2}\langle H f(0) x, x\rangle+? 0 \\
& \text { becouse } H f(x)=\text { cte } \\
& =\frac{1}{2}\langle A x, x\rangle+\left\langle b_{1} x\right\rangle+c \quad \quad\left((\theta) \quad A \in S_{+6}^{n}\right.
\end{aligned}
$$

Conjugate gradient method : motivation
has been developed for quadratic functions in high dumeurion! $\left.f\left(x^{2}\right)=\frac{1}{2}\langle A x, x>+2 b, x\rangle\right\rangle^{+c}$

$$
\begin{aligned}
& b \in x>{ }^{++c} \\
& A \subset S_{++} \quad b \in \mathbb{R}^{n}
\end{aligned}
$$

$$
\begin{array}{rlr}
f\left(x^{*}\right) & =\inf _{x \in \mathbb{R}^{n}} f(x) & \alpha_{1}=1 \alpha_{2}=2 \\
f(x) & =\frac{1}{2}\left(\alpha_{1} x_{1}^{2}+\alpha_{2} x^{2}\right), & \text { with } 0<\alpha_{1}<\alpha_{2}
\end{array}
$$

there is a better chore

$$
\begin{aligned}
& x_{1}=x_{0}-\alpha_{0} \nabla f\left(x_{0}\right) \\
& x_{k} \rightarrow x_{k}^{*}=(Q)
\end{aligned}
$$

than- $\nabla f(x)$ fo thedscont but $x_{k} \notin x^{*} \quad \forall k$

Definition : Let $A \in S_{++}^{n}$.

- 2 non zero vectors v, w are called A-conjugate iff $\langle A v, w\rangle=0 .=\langle v, A w\rangle$
- A family of non zero vectors $\left(v_{i}\right)_{i=1, \ldots m}$, is called A-conjugate iff $\left\langle A v_{i}, v_{j}\right\rangle=0$ for all $i=1, \ldots, m$, $j=1, \ldots, m, i \neq j$.
Property : A-conjugate vectors are linearly independent. If $m=n$ a A-conjugate family is a basis of \mathbb{R}^{n}.
Definition : a conjugate descent method is a method where the successive descent directions form a A-conjugate family

4ロ〉4吕 >4 引

Expression of the minimum of f in a A-conjugate

 basis the minumu of $f(x)$ sathfies $\nabla f\left(x^{d}\right)=0$ $A x^{*}+b=0$$$
f(x)=\frac{1}{2}\langle A x, x\rangle+\langle b, x\rangle
$$

Suppose we have a basis $\left(d_{i}\right)_{i=1, \ldots . n}$, such that $\left\langle A d_{i}, d_{j}\right\rangle=0$ for $j \neq i$

$$
x^{\star}=\sum_{i=1}^{n} \alpha_{i} d_{i}, \text { and } A x^{\star}+b=0
$$

therefore $A x^{\star}=-b=\sum_{i=1}^{n} \alpha_{i} A d_{i}$, then for any $j=1, \ldots, n$

$$
\begin{gathered}
-\left\langle b, d_{j}\right\rangle=\sum_{i=1}^{n} \alpha_{i}\left\langle A d_{j}, d_{j}\right\rangle=\alpha_{j}\left\langle A d_{j}, d_{j}\right\rangle \\
\alpha_{j}=\frac{-\left\langle b, d_{j}\right\rangle}{\left\langle A d_{j}, d_{j}\right\rangle}
\end{gathered}
$$

Construction of the A-conjugate basis
iteratively
choose initial pent $x_{0} \quad g_{0}=A x_{0}+b$
Let $g_{k}=\nabla f\left(x_{k}\right)=A x_{k}+b$ be the gradient at step k
Choose $d_{0}=-g_{0}$ (The first step is a standard gradient descent step)
Then $d_{k}=-g_{k}+\overbrace{3_{k-1}} d_{k-1}$ satisfying: $\beta_{k \rightarrow 1} \in \mathbb{R}$
(CGi) $\left\langle A d_{k}, d_{j}\right\rangle=0$ for $j=0, \ldots, k-1$ and
$\left\langle A d_{1}, d_{0}\right\rangle=0$
(CG2) $\left\langle g_{k}, d_{j}\right\rangle=0$ for $j=0, \ldots, k-1$
$\left\langle g_{1} d_{0}\right\rangle=0$
Update at step $k: x_{k+1}=x_{k}+\alpha_{k} d_{k}$
Next gradient $g_{k+1}=A x_{k+1}+b=g_{k}+\alpha_{k} A d_{k}$
Property: For all initial guess x_{0} there exists $\left(\alpha_{k}\right)_{k}$ and $\left(\beta_{k}\right)_{k}$ such that (CG1) and (CG2) are satisfied.
Property : (CG1) and (CG2) $\Rightarrow\left\langle g_{k}, g_{j}\right\rangle=0$ for $j \neq k$

$$
\begin{aligned}
& A x_{1}+b=g_{0}+\alpha_{0} A d_{0} \\
& \left.\left\langle g_{1}, d_{0}\right\rangle=0=\left\langle g_{0}, d_{0}\right\rangle+\alpha_{0}\left\langle A_{0}, d_{0}\right\rangle=0 \quad-\right\rangle \alpha_{0}=\frac{-\left\langle g_{0}, d_{0}\right\rangle}{\left\langle A d_{0}, d_{0}\right\rangle}
\end{aligned}
$$

4ロ〉4吕 >4 引

4ロ〉4吕 >4 引

Convergence of a conjugate method

Property : A conjugate descent method using directions satisfying conditions (CG1) and (CG2) converges in at most n steps.
Property: $\beta_{k}=-\frac{\left\langle A d_{k-1}, g_{k}\right\rangle}{\left\langle A d_{k-1}, d_{k-1}\right\rangle}=\frac{\left\|g_{k}\right\|^{2}}{\left\|g_{k-1}\right\|^{2}}$.

$$
d_{k}=-g_{k}+f_{k-1} d_{k-1}
$$

Property : $\alpha_{k}=-\frac{\left\langle g^{k}, d^{k}\right\rangle}{\left\langle A d^{k}, d^{k}\right\rangle}$

$$
x_{k+1}=x_{k}+\alpha_{k} d k
$$

Conjugate gradient algorithm
Data: Matrix A, vector b, tolerance ε
Result: x^{\star} such that $f\left(x^{\star}\right)=\min _{x} f(x)$
Initialisation: $k=0$,
Initial guess for solution $x^{0} \in \mathbb{R}^{n}$

$$
\begin{aligned}
& g^{0}=A x^{0}+b \\
& d^{0}=-g^{0}
\end{aligned}
$$

while $\left\|g^{k}\right\|>\varepsilon$ do
Compute directional minimum :

$$
v^{k}=A d^{k}
$$

$\alpha_{k}=-\frac{\left\langle g^{k}, d^{k}\right\rangle}{\left\langle v^{k}, d^{k}\right\rangle}$

$$
x^{k+1}=x^{k}+\alpha_{k} d^{k}
$$

same as the stoundord

Update gradient : gradient descent method $g^{k+1}=g^{k}+\alpha_{k} v^{k}$
Compute new direction :

$k \leftarrow k+1$
end
$x^{\star} \leftarrow x^{k}$

Monotonicity of the conjugate gradient algorithm

Property: If $d_{k} \neq 0$ and $\alpha_{k+1} \neq 0$ then $f\left(x_{k+1}\right)<f\left(x_{k}\right)$.
If $\alpha_{k+1}=0, x_{k}$ is the minimizer of f and $A x_{k}+b=0$

Polak-Ribière method for non quadratic fir $\mathbb{R}^{n} \rightarrow \mathbb{R}$
Data: Function f, gradient ∇f, tolerance ε
Result: x^{\star} such that $f\left(x^{\star}\right)=\min _{x} f(x)$
Initialisation : $k=0$,
Initial guess for $x^{0} \in \mathbb{R}^{n}$

$$
\begin{aligned}
& g^{0}=\nabla f\left(x^{0}\right) \\
& d^{0}=-g^{0} \\
& \text { while }\left\|g^{k}\right\|>\varepsilon \text { and } k<k_{\max } \text { do }
\end{aligned}
$$

Compute an admissible step in d_{R} $f\left(x^{k}+\alpha_{k} d^{k}\right)$

- Compute new position :

$$
x^{k+1}=x^{k}+\alpha_{k} d^{k}
$$

- Compute new direction :

$$
g^{k+1}=\nabla f\left(x^{k+1}\right)
$$

$c_{k+1}=\frac{\left\langle g^{k+1}-g^{k}, g^{k+1}\right\rangle}{\left\langle g^{k}, g^{k}\right\rangle}$
$d^{k+1}=-g^{k+1}+c_{k+1} d^{k}$
$k \leftarrow k+1$
end
$x^{\star} \leftarrow x^{k}$

Comparaison of conjugate Gradient (green, 4 steps)and Polak-Ribière (red, 8 steps) methods.
f quadratic function in \mathbb{R}^{5}. Projection on $\left(0, x_{1}, x_{2}\right)$.

Linear regression

Find θ defining a linear model $\quad \theta \in \mathbb{R}^{n} \quad h_{\theta}: \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
\hat{y}=h_{\theta}(x)=\theta^{\top} \cdot x
$$

Let m measurements $\left(x_{i}, y_{i}\right), i=1, \ldots, m$, where explaining variables are in $\mathbb{R}^{n}\left(x_{i}=\left(x_{i}^{j}\right)_{j=1, \ldots, n} . \theta\right.$ is found by minimizing the least squared error

$$
\begin{aligned}
& y=\left(\begin{array}{c}
y \\
\vdots \\
y_{m}
\end{array}\right) \\
& E(\theta)=\frac{1}{m} \sum_{i=1}^{m}\left(\theta^{T} \cdot x_{i}-y_{i}\right)^{2} \cdot=\frac{1}{m}\|X \theta-y\|^{2} \\
& \text { The normal equation gives. the best solution } \\
& \begin{array}{ll}
f(\theta)=\|x \theta-y\|^{2} & \nabla f(\theta)=0 \\
\nabla f(\theta)=2 X^{\top}(x \theta-y) & \theta=\left(X^{\top} \cdot X\right)^{-1} \cdot X^{\top} \cdot y
\end{array} \\
& X=\left(\begin{array}{lll}
x_{1}^{1} & \cdots & x_{1}^{n} \\
\vdots & & \\
x_{m}^{n} & \cdots & x_{m}^{n}
\end{array}\right)
\end{aligned}
$$

complexity in $O\left(n^{3}\right)$ and $O(m)$.

Outline

Course goals and terms

Introduction to Optimization
Reminders: Differential calculus
Convexity
Convex sets
Convex functions
Unconstrained optimisation
Optimality conditions in the unconstrained case
Solving systems of non linear equations
Descent methods
Non-linear least squares
Optimisation with constraints
Duality
Algorithms for constrained optimization

Nonlinear least squares

$$
f:\left\{\begin{aligned}
\mathbb{R}^{P} & \rightarrow \mathbb{R}^{Q} \\
x=\left(x_{1}, \ldots, x_{P}\right)^{t} & \mapsto\left(f_{1}(x), \ldots, f_{Q}(x)\right)^{t}
\end{aligned}\right.
$$

for $Q>P$ we seek a solution to the problem $f(x)=0$.
even if $Q=P \quad f(x)=0$ is difficult Newton

Examples
Find a line that passes through Q points with $Q>2$ of the points are not aligned the Pb ' has no solution $g(x)=\|f(x)\|^{2}$ minimise $g(x)$

Examples

Find the parameters N_{0} and λ of a radioactive material whose emissions are monitored over time $N(t)=N_{0} e^{-\lambda t}$ each mouth you measure $\hat{N}\left(A_{i}\right)=\hat{N}_{i}$

Toy example

Q is the minter of months woe
$N_{0}=x_{1} \quad \lambda=x_{2} \quad-\lambda t$ med.
Q meascrumentit $N_{i} \sim N\left(x_{i}\right)=N_{0} e^{-\lambda t_{i}} \quad i=1, \ldots, Q$
$f: \mathbb{R}^{2} \rightarrow R^{Q}$ with Q large
$\left(N_{i}\right)_{i=1, \ldots, Q}$ radioactivity measurements at times $\left(t_{i}\right)_{i=1, \ldots, Q}$

$$
f(x)=\left(\begin{array}{c}
f_{1}(x) \\
f_{2}(x) \\
\vdots \\
f_{Q}(x)
\end{array}\right)=\left(\begin{array}{c}
x_{1} e^{-x_{2} t_{1}}-N_{1} \\
x_{1} e^{-x_{2} t_{2}}-N_{2} \\
\vdots \\
x_{1} e^{-x_{2} t_{Q}}-N_{Q}
\end{array}\right) . \quad f(x)=0
$$

Calculate the Jacobian matrix $\operatorname{Jf}(x)$

Toy example

$f: \mathbb{R}^{2} \rightarrow R^{Q}$ with Q large
$\left(N_{i}\right)_{i=1, \ldots, Q}$ radioactivity measurements at times $\left(t_{i}\right)_{i=1, \ldots, Q}$

$$
f(x)=\left(\begin{array}{c}
f_{1}(x) \\
f_{2}(x) \\
\vdots \\
f_{Q}(x)
\end{array}\right)=\left(\begin{array}{c}
x_{1} e^{-x_{2} t_{1}}-N_{1} \\
x_{1} e^{-x_{2} t_{2}}-N_{2} \\
\vdots \\
x_{1} e^{-x_{2} t_{Q}}-N_{Q}
\end{array}\right) .
$$

Calculate the Jacobian matrix $\operatorname{Jf}(x)$

$$
J f(x)=\left(\begin{array}{cc}
e^{-x_{2} t_{1}} & -x_{1} t_{1} e^{-x_{2} t_{1}} \\
e^{-x_{2} t_{2}} & -x_{1} t_{2} e^{-x_{2} t_{2}} \\
\vdots & \\
e^{-x_{2} t_{Q}} & -x_{1} t_{Q} e^{-x_{2} t_{Q}}
\end{array}\right)
$$

Reminders: linear least squares

$A x=b$ for $b \in \mathbb{R}^{Q}$ and $A \in \mathcal{M}_{Q, P}(\mathbb{R})$ with $Q>P$ and $r g(A)=P$.
The problem: find $x \in \mathbb{R}^{P}$ such that

$$
\|A x-b\|^{2}=\min _{y \in \mathbb{R}^{P}}\|A y-b\|^{2}
$$

admits a unique solution given by the normal equation

$$
A^{t} A x=A^{t} b
$$

Nonlinear case

$g\left(x^{\psi}\right)\left\{\begin{array}{l}\text { Find } x^{*} \in \mathbb{R}^{P} \text { such that } \\ =\left\|f\left(x^{*}\right)\right\|^{2}=\min _{x \in \mathbb{R}^{P}}\|f(x)\|^{2} \quad\left(\|f(x)\|^{2}=\sum_{k=1}^{Q}\left(f_{k}(x)\right)^{2}\right),\end{array}\right.$
We suppose that :

$$
\forall x \in \mathbb{R}^{P}, \quad J_{f}(x) \in \mathcal{M}_{Q, P}(\mathbb{R}) \text { has rank } P
$$

In particular, we will have $\left(J_{f}(x)\right)^{t} J_{f}(x)$ symmetric defined positive.

Nonlinear case (continued)

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{Q} \quad 3 \in \mathbb{R}^{2}
$$

$$
\begin{array}{cc}
\text { Nonlinear case (continued) } & \text { with } N(y)=\|y\|^{2} \\
\operatorname{Dg}(x)=\|f(x)\|^{2}=N \circ & \text { awN }(f(x))) D f(x) h \\
\text { oN }(y) h=\langle 2 y, h\rangle \\
=\langle 2 f(x), \operatorname{Jg}(x) h> & D f(x) z=J f(x) z
\end{array}
$$

$$
g:\left\{\begin{array}{rll}
\mathbb{R}^{P} & \rightarrow \mathbb{R} \\
x & \mapsto & \|f(x)\|^{2}
\end{array}\right.
$$

If g is strictly convex and coercive then the problem $g\left(x^{*}\right)=\min _{x} g(x)$ admits a unique solution x^{*}

$$
\begin{aligned}
& \nabla g\left(x^{*}\right)=0 . \\
& \nabla g(x))=<2 J f(x)^{\top} f(x), h>\quad \nabla g(x)=2 J f(x)^{\top} f(x) \\
& \\
& J f(x) \in M_{Q \times 2}(R)
\end{aligned}
$$

Calculating the gradient of g

$g=$ Nof composition of
$N: \mathbb{R}^{Q} \rightarrow \mathbb{R}, N(y)=\|y\|^{2}$ and $f: \mathbb{R}^{P} \rightarrow \mathbb{R}^{Q}$.
The rule for differentiating a composite function gives
$D g(x)=D N(f(x)) D f(x)$
For $y, \delta \in \mathbb{R}^{Q}, D N(y) \delta=\langle 2 y, \delta\rangle$
for $x, h \in \mathbb{R}^{P}, \operatorname{Df}(x) h=\operatorname{Jf}(x) h \in \mathbb{R}^{Q}$

$$
\begin{gathered}
h, x \in \mathbb{R}^{P}, \quad D g(x) h=\langle 2 f(x), \operatorname{Jf}(x) h\rangle=\left\langle 2 \operatorname{Jf}(x)^{T} f(x), h\right\rangle \\
\nabla g(x)=2 \operatorname{Jf}(x)^{T} f(x)
\end{gathered}
$$

Find the zeros of ∇g or the zeros of $f(x)$

$\nabla \nabla g(x)=2 \operatorname{Jf}(x)^{\top} f(x)$ Newton method requires $\operatorname{Hf}(x)$

- If $f(x)$ is a function of \mathbb{R}^{P} in \mathbb{R}^{P} we find the zeros by Newton's algorithm

$$
\begin{gathered}
x_{k+1}=x_{k}+d_{k} \\
\text { with } \int J f\left(x_{k}\right) d_{k}=-f\left(x_{k}\right) .
\end{gathered}
$$

- Here $f(x)$ is a function of \mathbb{R}^{P} in \mathbb{R}^{Q} so the system
$J f\left(x_{k}\right) d_{k}=-f\left(x_{k}\right)$ of size $Q \times P$ is solved in the least the solution squares sense

$$
\begin{aligned}
& \operatorname{Jf}\left(x_{k}\right)^{\top} J f\left(x_{k}\right) d_{k}=-J f\left(x_{k}\right)^{\top} f\left(x_{k}\right) \\
\Leftrightarrow & d_{k}=-\left(J f\left(x_{k}\right)^{\top} J f\left(x_{k}\right)\right)^{-1} \operatorname{Jf}\left(x_{k}\right)^{\top} f\left(x_{k}\right) .
\end{aligned}
$$

Gauss Newton method for N.L. systems of equations

- Initialize $x_{0} \in \mathbb{R}^{P} \quad\left\|d_{k}\right\|>\varepsilon$
- While

- Update $k \rightarrow k+1$

$$
J f(x) d=-f(x)
$$

Convergence of the Gauss Newton method

We recall that $J f(x)$ of rank P and $g(x)$ is strictly convex coercive

- Let $x_{k} \in \mathbb{R}^{P}$, then the direction
$d_{k}=-\left(J f\left(x_{k}\right)^{T} J f\left(x_{k}\right)\right)^{-1} J f\left(x_{k}\right)^{T} f\left(x_{k}\right)$ satisfies

$$
\left\langle\nabla g\left(x_{k}\right), d_{k}\right\rangle \leq 0
$$

If $x_{k} \neq x^{*}$ then

$$
\left\langle\nabla g\left(x_{k}\right), d_{k}\right\rangle<0
$$

So d_{k} is a descent direction for g at x_{k}.

- If the sequence $\left(x_{k}\right)_{k}$ converges, then its limit is x^{*}.

Exercice

$$
f(x)=3 x_{1}^{2}+x_{2}^{2}-2 x_{1} x_{2}+x_{1}+x_{2}+1
$$

wuth in the quadratis form A, b, c

Exercice: $\mathbb{R}^{2} \rightarrow \mathbb{R}$

$$
f\left(x_{1}, x_{2}^{2}=4\left(x_{1}^{2}+x_{2}^{2}\right)-\left(x_{1}^{2}+x_{2}^{2}\right)^{2} \quad X=\left(x_{1}, x_{2}\right)\right.
$$

1) Compuse $\nabla f(x)$ and $H f(x)$
2) Comprite the set of pounts $\{\nabla f(x)=0\}=S$
3) Say if $x \in S$ is minimum or maximm

$$
\left.\begin{array}{l}
\nabla f(x)=\binom{8 x_{1}-4 x_{1}\left(x_{1}^{2}+x_{2}^{2}\right)}{8 x_{2}-4 x_{2}\left(x_{1}^{2}+x_{2}^{2}\right)} H f(x)=\left(\begin{array}{ll}
8-12 x_{1}^{2}-4 x_{2}^{2} & -8 x_{1} x_{2} \\
-8 x_{2} & 8-12 x_{2}^{2}-4 x_{1}^{2}
\end{array}\right. \\
\binom{2 x_{1}=x_{1}\left(x_{1}^{2}+x_{2}^{2}\right)}{2 x_{2}=x_{2}\left(x_{1}^{2}+x_{2}^{2}\right)} \Leftrightarrow S=\{(0,0)\} \cup\left\{\begin{array}{l}
x_{1}^{2}+x_{2}^{2}=2 \\
\text { crch of curtel } 600
\end{array}\right) \\
\text { 2adiuns } \sqrt{2}
\end{array}\right\}
$$

question 3 for tomorow

