Optimality condition for quadratic problems

$$
\begin{aligned}
& \nabla f(x)=Q x+g \\
& H f(x)=Q
\end{aligned}
$$

$$
\inf _{x \in \mathbb{R}^{n}} f(x)=\frac{1}{2}\langle x, Q x\rangle+\langle g, x\rangle+c
$$

$$
\begin{aligned}
& \text { for } x \\
& \text { otgenector } \\
& \text { of } \lambda<0
\end{aligned}
$$

where Q is a symetric $n \times n$ matrix, $g \in \mathbb{R}^{n}$ and $c \in \mathbb{R}$.
1 - If Q is not positive semi definite then the problem has no solution : no $x \in \mathbb{R}^{n}$ realizes a local minimum. f of some x
2 If Q is positive definite then $x^{\star}=-Q^{-1} g$ is the only global minimum.

$$
\nabla f\left(x^{*}\right)=0
$$

3 if $Q \geqslant 0 \quad \because \exists \lambda=0 \quad \partial v / Q v=0$ $\{\alpha v, \alpha \in \mathbb{R}\} \quad f(\alpha v)=\langle g, \alpha v\rangle+c=\alpha\langle g, v\rangle+c$ if $(g, v)=0 f(\omega)=c$ (foot $f(a v) \rightarrow-\infty$

Solving systems of non linear equations
a necessary condition for $x^{*}=\underset{x \in E}{\operatorname{argmin}} f(x)$ $\nabla f\left(x^{*}\right)=0$

Fixed point method

$$
\psi(x)=g(x)-x
$$

Definition
A fixed point $x \in \mathbb{R}^{N}$ of a function $g: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is a point such that $x=g(x)$

$$
\Leftrightarrow \quad g(x)-x=0
$$

Definition
A fixed point $x \in \mathbb{R}^{N}$ of a function $g: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is said to be attractive if there exists a neighborhood V of x such that for all x_{0} in V, the sequence defined by $x_{n+1}=g\left(x_{n}\right)$ converges to x. Otherwise, the point is said to be repulsive.
if $x_{n} \rightarrow l \quad\left(x_{n}\right.$ converges to a limit) at the limit

$$
\begin{aligned}
& x_{n+1}=g\left(x_{n}\right) \\
& \ell=g(\stackrel{\downarrow}{l}) \\
& l=g
\end{aligned}
$$

Picard's Theorem

contactante
Theorem (Picard's Theorem)
Let F be a closed Sta se of \mathbb{R}^{N} and let $g: F \subset \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ be a map such that $g(F) \subset F$. We assume that g is contracting, ie. there exists $k \in] 0,1[$ such that:

$$
\begin{equation*}
\forall x, y \in F, \quad\|g(x)-g(y)\| \leq k\|x-y\| . \tag{2}
\end{equation*}
$$

Then there exists a unique $x^{*} \in F \subset \mathbb{R}^{N}$ such that $g\left(x^{*}\right)=x^{*}$ and, for all $x_{0} \in F$, the sequence defined by $x_{n+1}=g\left(x_{n}\right)$ converges to x^{*} (i.e. x^{\star} is an attractive fixed point).
Furthermore, there exists a constant C (depending on the choice of x_{0} and the function g) such that

$$
\left\|x_{n}-x^{*}\right\| \leq C k^{n} .
$$

$$
\begin{aligned}
& C=\left\|x_{1}-x_{0}\right\| \\
& =\left\|g\left(x_{0}\right)-x_{0}\right\|
\end{aligned}
$$

Fixed point algorithm $H: \exists k \in] 0, \Sigma\|g(x)-g(y)\| \leq k \| x-y \pi$

1) $x_{n+1}=g\left(x_{n}\right)$ converges
$\left(x_{n}\right)$ de cauchy: $\left\|x_{n+1}-x_{n}\right\|=\left\|g\left(x_{n}\right)-g\left(x_{n-1}\right)\right\|$

$$
\begin{array}{ll}
\text { de cauchy: } & \left\|x_{n+1}-x_{n}\right\|=\| g\left(x_{n}\right) \\
n>\left\|x_{n}-x_{n-1}\right\|
\end{array}
$$

$$
\left\|x_{n}=x_{p}\right\|=\left\|x_{n}-x_{n, 1}+x_{n-1}-x_{n-2}+\cdots \quad x_{p+1} \cdot x_{p}\right\|
$$

$l=g(l) l$ is a fred point $n>p \quad l=x^{*}=g\left(x^{*}\right)^{n}$

$$
\begin{aligned}
\left\|x_{n}-x^{*}\right\| & =\left\|g\left(x_{n-1}\right)-g\left(x^{*}\right)\right\| \leqslant k\left\|x_{n-1}-x^{*}\right\| \\
& \leqslant k^{n}\left\|x_{1}-x_{0}\right\|
\end{aligned}
$$

$$
g(x)=0, \text { scalar case } \quad\left(g(x)=f^{\prime}(x)\right)
$$

$$
\begin{aligned}
& \text { Zeros of function } g: \mathbb{R} \longrightarrow \mathbb{R}^{\prime}\left(x^{*}\right)\left(x-x^{*}\right)+O\left(\left\|x-x^{*}\right\|\right) \\
& g(x)=g\left(x^{*}\right)+g^{\prime}\left(x^{*}\right)(x)+g^{\prime}(x)\left(x^{\star}-x\right)+o\left(\left\|x^{\star}-x\right\|\right) . \leftarrow
\end{aligned}
$$

factor $g^{\prime}(x) \neq 0 \quad g^{\prime}(x)\left(\frac{g(x)}{g^{\prime}(x)}+x^{*}-x\right)=0$
Fixed point algorithm to solve a nonlinear equation

$$
\begin{aligned}
& \psi(x)=x-\frac{g(x)}{g^{\prime}(x)}=x^{*}- \\
& x, x(x) \stackrel{\text { with }}{=} \psi(x)=x-g(x) / g^{\prime}(x)
\end{aligned}
$$

if $\psi(x)=x$ has a solution it converges to x^{4}
Approximation by a sequence x_{n}

$$
x_{n+1}=x_{n}-g\left(x_{n}\right) / g^{\prime}\left(x_{n}\right)=\psi\left(x_{n}\right)
$$

Newton algorithm (scalar case) equatri on of the tangent $\left|x_{n}-x_{n-1}\right|>\varepsilon_{1}$ equation of to
at $\left(x_{0}, g\left(x_{0}\right)\right.$)

$$
\begin{aligned}
& y=g\left(x_{0}\right)+g^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) \\
& v=g\left(x_{0}\right)+g^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) \\
& x=g\left(x_{0}\right)
\end{aligned}
$$

$x=x_{0}-\frac{g\left(t_{0}\right)}{g\left(x_{0}\right)}=x_{1}, \max$
Data: Function $g(x)$, derivative $g^{\prime}(x)$, \varlimsup_{0} Ierance ε, max
program progom number of iterations $k_{\text {max }}$
Result: x^{\star} such that $g\left(x^{\star}\right)=0 \Rightarrow$ numerically $\left|g\left(x_{k}\right)\right| \leqslant \varepsilon$ Initialisation: $k=0, x_{0}$ initial guess for $g\left(x_{0}\right) \neq 0$. while $g\left(x_{k}\right) \mid>\varepsilon$ and $k \leq k_{\text {max }}$ do

$$
\begin{aligned}
& x_{k+1}=x_{k}-\frac{g\left(x_{k}\right)}{g^{\prime}\left(x_{k}\right)} \\
& k \leftarrow k+1
\end{aligned}
$$

$$
k \leftarrow k+1
$$

end
$x^{\star} \leftarrow x_{k}$ cheek that
Then $\left|x^{*}\left(x^{*}\right)\right| \leq \varepsilon$ punt a warning

Convergence of Newton algorithm
 fixed pouts we had $\left\|x_{k}-x^{+}\right\| \geq C k^{P}$

Let g in C^{2} on $I=\left[x^{\star}-r, x^{\star}+r\right]$ with $g\left(x^{\star}\right)=0$ and $g^{\prime} \neq 0$ on I. Let

$$
M=\max _{x \in 1}\left|\frac{g^{\prime \prime}(x)}{g^{\prime}(x)}\right|, \quad \text { and } h=\min \left(r, \frac{1}{M}\right) .
$$

an cannot be cortices Then for any $\left.x_{0} \in\right] x^{\star}-h, x^{\star}+h[$ we have

$$
\begin{aligned}
& \left|x_{k}-x^{\star}\right| \leq \frac{1}{M}\left(\left.M\left|x_{0}-x^{\star}\right|\right|^{2 k}\right) \in \begin{array}{c}
\text { quadratic } \\
\text { speed of }
\end{array} \\
& \text { convergence }
\end{aligned}
$$

Convergence speed (not specif a to Neentou)
algorithm building a convergent sequence
suppose $x^{k l} \rightarrow x^{*} \quad x^{k+1}=\phi\left(x^{k}\right)$
Denote by $e_{k}=x^{k}-x^{\star}$ the error at iteration k. We say that

- the algorithm converges if $\lim _{k \rightarrow \infty}\left\|e_{k}\right\|=0$
- the algorithm converges linearly if $c \in] 0,1[$ tel que $\left\|e_{k}\right\| \leq c\left\|e_{k-1}\right\|$ for $k>K(c)$
the algorithm converges supra-linearly if $\left(c_{k}\right)_{k \in \mathbb{N}}$ with $\lim _{k \rightarrow \infty} c_{k}=0$ such that $\left\|e_{k}\right\| \leq c_{k}\left\|e_{k-1}\right\|$
- the algorithm converges geometrically if the sequence c_{k} is geometric
the algorithm is of order p if there exists $c \in] 0,1$ [such that $\left\|e_{k}\right\| \leq c\left\|e_{k-1}\right\|^{p}$ for $k>K(c)$
The convergence can be global or local \&for Newton

$$
\left\|e_{k}\right\| \leq c\left\|e_{k-1}\right\|^{2} \quad \text { or of ur } 2
$$

Newton method in dimension n

$$
\begin{aligned}
& G(x)=0 \text { with } G: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n} . \quad x^{*} \in \mathbb{R}^{n} \\
& \text { Let } J G(x) \in \mathbb{R}^{n \times n} \text { the jacobian matrix of } G \text { in } x,
\end{aligned} \quad\left\{\begin{array}{l}
G_{d}\left(x^{*}\right)=0 \\
G_{n}\left(x^{*}\right)=0
\end{array}\right.
$$

$$
J G_{i, j}(x)=\frac{\partial G_{i}(x)}{\partial x_{j}} .
$$

$$
\frac{1}{g^{\prime}(x)} \longrightarrow J G(x)^{-1}
$$

$$
G\left(x^{\star}\right)=G(x)+J G(x)\left(x-x^{\star}\right)+O\left(\| x-x^{\star}\right) \| .
$$

Scalar case $\varphi(x)=x-g(x) / g^{\prime}(x)$
Fixed point algorithm to solve a nonlinear equation

$$
\Psi(X)=X, \text { with } \Psi(x)=X-J G(X)^{-1} G(X) .
$$

Approximation by a fixed point sequence $X_{n+1}=\Psi\left(X_{n}\right)$ rads $X_{k} \in \mathbb{R}^{n}$

$$
X_{k+1}=X k-J G(X k)^{-1} G\left(X_{k}\right)
$$

Except that in practice for n large, one never computes the inverse of a matrix major wee in saontific consenting

Newton-Ralphson algorithm
program thees 2 functions
Data: Function $G(x)$, jacobian matrix $J G(x)$, tolerance ε, max number of iterations $k_{\text {max }}$
Result: x^{\star} such that $G\left(x^{\star}\right)=0$
Initialisation : $k=0, x_{0} \in \mathbb{R}^{n}$

$$
\begin{aligned}
& \begin{array}{l}
\text { while }\left\|G\left(x_{k}\right)\right\|>\varepsilon \text { and } k \leq k_{\text {max }} \text { do } \\
\text { Solve } J G\left(x_{k}\right) d_{k}=-G\left(x_{k}\right) j \\
x_{k+1}=x_{k}+d_{k} \\
k \leftarrow k+1
\end{array} \\
& \begin{array}{ll}
\text { end } \\
x^{\star} \leftarrow x_{k}
\end{array}
\end{aligned}
$$

\rightarrow numpy. linsolve
linear sysferm rumply

Convergence of Newton-Ralphson algorithm
theoutical result. in pa the the hard part is vochoore x_{0}

Suppose:
$\hat{N}^{g\left(\left(x^{*}\right) \neq 0\right.}$

- $G\left(x^{\star}\right)=0$
- the tangent linear map $J G\left(x^{\star}\right) \in \mathcal{L}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$ is inversible.

Then x^{\star} is a superattractive fixed point of

$$
\begin{array}{ll}
\Psi(x)=x-(J G(x))^{-1} G(x) . \\
\exists V\left(x^{*}\right) \text { s.t. } x_{0} \in V\left(x^{*}\right) \\
x_{n+1}=\psi\left(x_{n}\right) & x_{n} \rightarrow e^{k} \\
& \left\|x_{n}-x^{\star}\right\| \subseteq C R^{2 n}
\end{array}
$$

Scalar case : the secant method

Data: Function $g(x)$, tolerance ε, max number of iterations $k_{\text {max }}$
Result: x^{\star} such that $g\left(x^{\star}\right)=0$
Initialisation : $k=0, x_{0}$ initial guess for $g(x)=0$.
a_{0} initial guess for $g^{\prime}\left(x_{0}\right)$ (default $=1$) while $\left|g\left(x_{k}\right)\right|>\varepsilon$ and $k<k_{\max }$ do
$\left\lvert\, \begin{aligned} & x_{k+1}=x_{k}-\frac{g\left(x_{k}\right)}{a_{k}} \\ & a_{k+1}=\frac{g\left(x_{k}\right)-g\left(x_{k+1}\right)}{x_{k}-x_{k+1}}\end{aligned}\right.$
end
$x^{\star} \leftarrow x_{k}$

Vector case : the quasi-Newton method
Data: $G: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$
$\varepsilon>0$.
Result: x^{\star} such that $g\left(x^{\star}\right)=0$
Initialisation : a first approximation of $x_{0} \in \mathbb{R}^{n}$.
$A_{0} \approx J\left(x_{0}\right)$ or $W_{0} \approx J\left(x_{0}\right)^{-1} \rightarrow$ stand with $A_{0}=$ Id
$x_{1}=x_{0}-W_{0} G\left(x_{0}\right)$
$d_{0}=x_{1}-x_{0}$,
$y_{0}=G\left(x_{1}\right)-G\left(x_{0}\right)$,
$k=1$
while $\left\|G\left(x_{k}\right)\right\|>\varepsilon$ and $k<k_{\text {max }}$ do
Update : $W_{k}=W_{k-1}+B_{k-1}$ Compute d_{k} solution of $d_{k}=-W_{k} G\left(x_{k}\right)$

$$
x_{k+1}=x_{k}+d_{k}
$$

$$
y_{k}=G\left(x_{k+1}\right)-G\left(x_{k}\right)
$$

end

$$
k \leftarrow k+1
$$

$x^{\star} \leftarrow x_{k}$

Comparison of Newton and quasi Newton methods

Minimum of the quadratic function $f(x)=\left(\left(x_{1}-2\right)^{4}+\left(x_{2}-3\right)^{4}\right) / 2$ Newton method : 12 iterations quasi Newton (BFGS) method : 21 iterations

Update in the quasi Newton method

Update:

$W_{k}=W_{k-1}+B_{k-1}$

$$
\begin{aligned}
& W_{k} \simeq J G\left(X_{k}\right)^{-1} \\
& \text { similan ules if } \\
& A_{k} \simeq J G\left(X_{k}\right)^{-1}
\end{aligned}
$$

Compute d_{k} solution of $d_{k}=-W_{k} G\left(x_{k}\right)$
$x_{k+1}=x_{k}+d_{k}$
Conditions on the W_{k} matrix

1. W_{k} should remain symetric positive definite for all k.
2. The quasi-Newton equation $W_{k} y_{k}=d_{k}$ is satisfied for each k
3. The difference between two consecutive approximations $W_{k+1}-W_{k}$ is minimum in some sense (for some norm), for example for the Frobenius norm

Examples of update rules satisfying the conditions

$$
\begin{aligned}
& W_{k}=W_{k-1}+B_{k-1} \\
& d_{k}=-W_{k} G\left(x_{k}\right) \\
& x_{k+1}=x_{k}+d_{k} \\
& y_{k}=G\left(x_{k+1}\right)-G\left(x_{k}\right)
\end{aligned}
$$

- The Davidon-Fletcher-Powell method

$$
(D F P) \quad W_{k+1}=W_{k}+\frac{d_{k} d_{k}^{T}}{\left\langle y_{k}, d_{k}\right\rangle}-\frac{W_{k} y_{k} y_{k}^{T} W_{k}}{\left\langle y_{k}, W_{k} y_{k}\right\rangle} .
$$

- The Broyden-Fletcher-Goldfarb-Shanno method
(BFGS)

$$
\begin{aligned}
& W_{k+1}=W_{k}-\frac{d_{k} y_{k}^{T} W_{k}+W_{k} y_{k} d_{k}^{T}}{\left\langle y_{k}, d_{k}\right\rangle} \\
& +\left(1+\frac{\left\langle y_{k}, W_{k} y_{k}\right\rangle}{\left\langle y_{k}, d_{k}\right\rangle}\right) \frac{d_{k} d_{k}^{T}}{\left\langle y_{k}, d_{k}\right\rangle}
\end{aligned}
$$

Exercice

Consider the minimisation problem

$$
x^{\star}=\underset{\mathbb{R}^{2}}{\operatorname{argmin}} f(x), \quad \text { with } f(x)=\left(x_{1}-1\right)^{4}+\left(x_{2}-2\right)^{4}
$$

1. Solve the problem exactly.
2. Write Newton algorithm for this problem. Show that it converges for any $x^{0} \in \mathbb{R}^{2}$.

Consider now the gradient algorithm for this problem. In order to select the step α_{k} in the gradाent direction

$$
x^{k+1}=x^{k}-\alpha_{k} \nabla f\left(x^{k}\right)
$$

we consider the function $\varphi^{k}(\rho)=f\left(x^{k}-\rho \nabla f\left(x^{k}\right)\right)$ and $p^{k}(\rho)$ polynomial of degree 2 that interpolates $\varphi(0)$, $\varphi^{\prime}(0)$ and $\varphi^{\prime \prime}(0)$.
3. Define $p^{k}(\rho)$ from the values $\varphi(0), \varphi^{\prime}(0)$ and $\varphi^{\prime \prime}(0)$
4. Compute $\rho^{k}=\operatorname{argmin}_{\rho>0} p^{k}(\rho)$
5. Show that there exists $\alpha>0$ s.t. if $\alpha_{k}=\alpha \rho_{k}$ then

$$
\left\|x^{k+1}-x^{\star}\right\| \leq \mu\left\|x^{k}-x^{\star}\right\| \text { with } 0<\mu<1
$$

6. Conclude that $\lim _{k \rightarrow \infty} x^{k}=x^{\star}$ and compute the error estimate $\left\|x^{0}-x^{\star}\right\|$.

Exercice $f(x)=\left(x_{1}-1\right)^{4}+\left(x_{2}-2\right)^{4}$
find $f\left(x^{*}\right)=\min f(x) \quad x^{*}=(1,2) \in\left(f(x) \geqslant 0:\right.$ and $\left.g\left(x^{2}\right)=0\right)$ $G(x) I f(x)$ N $V(x, j)=f(x)$, with Newton: $X_{k+1}=X_{k}-J G\left(X_{k}\right)^{-1} G\left(x_{k}\right)$

$$
\begin{aligned}
& G(x)=\binom{4\left(x_{1}-1\right)^{3}}{4\left(x_{2}-2\right)^{3}} \quad J G(x)=\left(\begin{array}{cc}
12\left(x_{1}-1\right)^{2} & 0 \\
0 & 12\left(x_{2}-2\right)^{2}
\end{array}\right) \\
& J G(x)^{-1}=\left(\begin{array}{cc}
\frac{1}{12\left(x_{1}-1\right)^{2}} & 0 \\
0 & \frac{1}{12\left(x_{2}-2\right)^{2}}
\end{array}\right) \quad J f(x) \cdot J\left(F(x)^{-1}=I d\right. \\
& \text { Compute } X_{k+1} \text { knowing } x_{k}
\end{aligned}
$$

Exercice Jinverse of a 2×2 matix:

$$
\begin{array}{r}
\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)^{-1}=\frac{1}{D}\left(\begin{array}{cc}
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{array}\right) \\
\text { with } D=a_{11} a_{22}-a_{12} a_{21}
\end{array}
$$

General Cose: use the cofactor:
 cofactor matrix divided by the detorninant.

Exercice

Exercice

