
Optimality condition for quadratic problems

inf
x2Rn

f (x) =
1
2
hx ,Qxi+ hg, xi+ c

where Q is a symetric n ⇥ n matrix, g 2 Rn and c 2 R.
I If Q is not positive semi definite then the problem has no

solution : no x 2 Rn realizes a local minimum.
I If Q is positive definite then x? = �Q�1g is the only global

minimum.
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Solving systems of non linear equations

rf (x) = 0
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Fixed point method

Definition
A fixed point x 2 RN of a function g : RN ! RN is a point such
that x = g(x)

Definition
A fixed point x 2 RN of a function g : RN ! RN is said to be
attractive if there exists a neighborhood V of x such that for all
x0 in V , the sequence defined by xn+1 = g(xn) converges to x .
Otherwise, the point is said to be repulsive.
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Picard’s Theorem

Theorem (Picard’s Theorem)
Let F be a closed state of RN and let g : F ⇢ RN ! RN be a
map such that g(F ) ⇢ F. We assume that g is contracting, i.e.
there exists k 2]0, 1[ such that:

8x , y 2 F , kg(x)� g(y)k  kkx � yk. (2)

Then there exists a unique x⇤ 2 F ⇢ RN such that g(x⇤) = x⇤

and, for all x0 2 F, the sequence defined by xn+1 = g(xn)
converges to x⇤ (i.e. x? is an attractive fixed point).
Furthermore, there exists a constant C (depending on the
choice of x0 and the function g) such that

kxn � x⇤k  Ckn. (3)
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Fixed point algorithm

159

Postel

Postel

Postel

Postel

Postel



g(x) = 0, scalar case

Zeros of function g : R �! R

g(x?) = g(x) + g0(x)(x? � x) + o(||x? � x ||).

Fixed point algorithm to solve a nonlinear equation

 (x) = x , with  (x) = x � g(x)/g0(x).

Approximation by a sequence xn

xn+1 = xn � g(xn)/g0(xn)
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Newton algorithm (scalar case)

Data: Function g(x) derivative g0(x), tolerance ", max
number of iterations kmax

Result: x? such that g(x?) = 0
Initialisation : k = 0, x0 initial guess for g(x0) = 0.
while |g(xk )| > " and k  kmax do

xk+1 = xk �
g(xk )

g0(xk )
k  k + 1

end
x?  xk
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Convergence of Newton algorithm

Let g in C2 on I = [x? � r , x? + r ] with g(x?) = 0 and g0 6= 0 on
I. Let

M = max
x2I

����
g00(x)
g0(x)

���� , and h = min

✓
r ,

1
M

◆
.

Then for any x0 2]x? � h, x? + h[ we have

|xk � x?|  1
M

(M|x0 � x?|)2k ,

from which we deduce limk!+1 |xk � x?| = 0.
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Convergence speed

Denote by ek = xk � x? the error at iteration k . We say that
I the algorithm converges if limk!1 ||ek || = 0
I the algorithm converges linearly if c 2]0, 1[ tel que

||ek ||  c||ek�1|| for k > K (c)
I the algorithm converges supra-linearly if (ck )k2N with

limk!1 ck = 0 such that ||ek ||  ck ||ek�1||
I the algorithm converges geometrically if the sequence ck is

geometric
I the algorithme is of order p if there exists c 2]0, 1[ such

that ||ek ||  c||ek�1||p for k > K (c)
The convergence can be global or local
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Newton method in dimension n
G(x) = 0 with G : Rn �! Rn.
Let JG(x) 2 Rn⇥n the jacobian matrix of G in x ,

JGi,j(x) =
@Gi(x)
@xj

.

G(x?) = G(x) + JG(x)(x � x?) + o(||x � x?)||.

Fixed point algorithm to solve a nonlinear equation

 (X ) = X , with  (x) = X � JG(X )�1G(X ).

Approximation by a fixed point sequence Xn+1 =  (Xn)

Xn+1 = Xn � JG(Xn)
�1G(Xn)

Except that in practice for n large, one never computes the
inverse of a matrix
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Newton-Ralphson algorithm

Data: Function G(x), jacobian matrix JG(x), tolerance ",
max number of iterations kmax

Result: x? such that G(x?) = 0
Initialisation : k = 0, x0
while ||G(xk )|| > " and k  kmax do

Solve JG(xk )dk = �G(xk )
xk+1 = xk + dk
k  k + 1

end
x?  xk
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Convergence of Newton-Ralphson algorithm

Suppose :
I G of class C2

I G(x?) 6= 0
I the tangent linear map JG(x?) 2 L(Rm,Rm) is inversible.

Then x? is a superattractive fixed point of

 (x) = x � (JG(x))�1G(x).
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Scalar case : the secant method

Data: Function g(x), tolerance ", max number of iterations
kmax

Result: x? such that g(x?) = 0
Initialisation : k = 0, x0 initial guess for g(x) = 0.
a0 initial guess for g0(x0) (default =1)
while |g(xk )| > " and k < kmax do

xk+1 = xk �
g(xk )

ak

ak+1 =
g(xk )� g(xk+1)

xk � xk+1
k  k + 1

end
x?  xk
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Vector case : the quasi-Newton method
Data: G : Rn �! Rn

" > 0.
Result: x? such that g(x?) = 0
Initialisation : a first approximation of x0 2 Rn

A0 ⇡ J(x0) or W0 ⇡ J(x0)
�1

x1 = x0 �W0G(x0)
d0 = x1 � x0,
y0 = G(x1)�G(x0),
k = 1
while ||G(xk )|| > " and k < kmax do

Update : Wk = Wk�1 + Bk�1
Compute dk solution of dk = �WkG(xk )
xk+1 = xk + dk
yk = G(xk+1)�G(xk )
k  k + 1

end
x?  xk
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Comparison of Newton and quasi Newton methods
Minimum of the quadratic function f (x) = ((x1 � 2)4 + (x2 � 3)4)/2
Newton method : 12 iterations
quasi Newton (BFGS) method : 21 iterations
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Update in the quasi Newton method

Update :
Wk = Wk�1 + Bk�1
Compute dk solution of dk = �WkG(xk )
xk+1 = xk + dk
Conditions on the Wk matrix

1. Wk should remain symetric positive definite for all k .
2. The quasi-Newton equation Wkyk = dk is satisfied for each

k
3. The difference between two consecutive approximations

Wk+1 �Wk is minimum in some sense (for some norm), for
example for the Frobenius norm
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Examples of update rules satisfying the conditions
Wk = Wk�1 + Bk�1
dk = �WkG(xk )
xk+1 = xk + dk
yk = G(xk+1)�G(xk )

I The Davidon-Fletcher-Powell method

(DFP) Wk+1 = Wk +
dkdT

k
hyk , dk i

�
WkykyT

k Wk

hyk ,Wkyk i
.

I The Broyden-Fletcher-Goldfarb-Shanno method

(BFGS) Wk+1 = Wk �
dkyT

k Wk + WkykdT
k

hyk , dk i

+

✓
1 +
hyk ,Wkyk i
hyk , dk i

◆
dkdT

k
hyk , dk i

.
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Exercice
Consider the minimisation problem

x? = argmin
R2

f (x), with f (x) = (x1 � 1)4 + (x2 � 2)4

1. Solve the problem exactly.

2. Write Newton algorithm for this problem. Show that it converges for any x0 2 R2.

Consider now the gradient algorithm for this problem. In order to select the step ↵k in the gradient direction

xk+1 = xk � ↵krf (xk )

we consider the function 'k (⇢) = f (xk � ⇢rf (xk )) and pk (⇢) polynomial of degree 2 that interpolates '(0),
'0(0) and '00(0).

3. Define pk (⇢) from the values '(0), '0(0) and '00(0)

4. Compute ⇢k = argmin⇢>0 pk (⇢)

5. Show that there exists ↵ > 0 s.t. if ↵k = ↵⇢k then

||xk+1 � x?||  µ||xk � x?|| with 0 < µ < 1

6. Conclude that limk!1 xk = x? and compute the error estimate ||x0 � x?||.
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