Optimality conditions in the unconstrained case

Find extrema of a function defined on *E*. Find $\inf_{x \to 0} f(x)$,

with

 $f: E \longrightarrow \mathbb{R}$

E normed finite dimension vector space

infimum of f is the court of Notation as long as we don't know if a minimum exists

IK.

Necessary optimality conditions $p \exists \xi , L \forall y \quad l|x^{*} - y|l \leq \epsilon$

$$f(x^*) \in f(y)$$

Let x^* local minimum of a function $f : \mathbb{R}^n \longrightarrow \mathbb{R}$.

- 1. First order optimality condition : if *f* is differentiable on an open neighborhood *V* of x^* , then $\nabla f(x^*) = 0$
- 2. Second order optimality condition : moreover if f is twice differentiable on V, then $Hf(x^*)$ is positive semi definite only and f is locally convex in x^* . $\begin{cases} Salar arx^{:} & f: R \rightarrow R \\ 0 & if f(x^*) \ local minimum f(x^*)=0 \\ 0 & if f(x^*) \ local minimum f(x^*)=0 \\ 0 & f(x^*) \ locally \ convex \ une^{k} \\ f''(x^*) \ locally \ convex \ une^{k} \\ f''(x^*) \ locally \ convex \ une^{k} \end{cases}$

145

Suppose $f(x^*) \leq f(x)$ for $||x - x^*|| \leq \varepsilon$ $\int \left\{ p(x^{*} + \lambda(x - x^{*})) = f(x^{*}) + \langle \nabla f(x^{*}), \lambda(x - x^{*}) \rangle + o(||\lambda(x - x^{*})|) \right\}$ $\int \left\{ p(x^{*} + \lambda(x - x^{*})) - f(x^{*}) = \lambda \langle \nabla f(x^{*}), x - x^{*} \rangle + o(||\lambda(x - x^{*})|) \right\}$ $\int \left\{ p(x^{*} + \lambda(x - x^{*})) - f(x^{*}) = \lambda \langle \nabla f(x^{*}), x - x^{*} \rangle + o(||\lambda|) \right\}$ $\int \left\{ p(x^{*} + \lambda(x - x^{*})) - f(x^{*}) = \lambda \langle \nabla f(x^{*}), x - x^{*} \rangle + o(||\lambda|) \right\}$ < V ((x+), x-x+ 7 50 $(\sqrt{y})(x^{*}), x - x^{*} = 0 \quad \forall x =) (\sqrt{y}(x^{*})) = 0$ 2) $f(x^{*} + A(x - x^{*})) = f(x^{*}) + \frac{1}{2} \langle Hf(x^{*})(x - x^{*}), A(x - x^{*}) \rangle + \frac{1}{2} \langle Hf(x^{*})(x - x^{*}), A(x - x^{*}), A(x - x^{*}) \rangle + \frac{1}{2} \langle Hf(x^{*})(x - x^{*}), A(x - x^{*}), A(x - x^{*}) \rangle = f(x^{*}) + \frac{1}{2} \langle Hf(x^{*})(x - x^{*}), A(x - x^{*}), A(x - x^{*}) \rangle + \frac{1}{2} \langle Hf(x^{*})(x - x^{*}), A(x - x^{*}), A(x - x^{*}) \rangle = f(x^{*}) + \frac{1}{2} \langle Hf(x^{*})(x - x^{*}), A(x - x^{*}), A(x - x^{*}) \rangle = f(x^{*}) + \frac{1}{2} \langle Hf(x^{*})(x - x^{*}), A(x - x^{*}), A(x - x^{*}) \rangle + \frac{1}{2} \langle Hf(x^{*})(x - x^{*}), A(x - x^{*}), A(x - x^{*}) \rangle = f(x^{*}) + \frac{1}{2} \langle Hf(x^{*})(x - x^{*}), A(x - x^{*}), A(x - x^{*}) \rangle + \frac{1}{2} \langle Hf(x^{*})(x - x^{*}), A(x - x^{*}), A(x - x^{*}) \rangle = f(x^{*}) + \frac{1}{2} \langle Hf(x^{*})(x - x^{*}), A(x - x^{*}), A(x - x^{*}) \rangle$ 0(1121x-xx)1) A small enough $f(x^{*} + \lambda(x-x^{*})) - f(x^{*}) \ge 0$ divide by $\gamma^{2} = (Hf(x^{*}), x-x^{*}) \ge 0$ ロト 4 団 ト 4 国 ト 4 国 ト 9 へ ()

Examples

$$f'(x) = 4x^3$$
 $f'(0) = 0$
 $f'(x) = 12x^2$ $f''(0) = 0$

Counter example :
$$f(x) = x^4$$
. global minum $x^4 = 0$
Counter example : $f(x) = x^3$. $f'(0) = 0$ $f'(0) = 0$
the reciprocal of the necessary condition doesn it
herei pocal of the necessary condition doesn it

Sufficient optimality conditions $f(x^{*} + \lambda(x \cdot x^{*})) = f(x^{*} + \lambda(x \cdot x^{*})) = f(x^{*}$ 172/2 H B(x+)(x-x), x-x* >+ O(2) $-l(x^*)=$ q(xt + 7/2.xt) to '2 < do' set is a Cocal mini num If f is twice differentiable in x^* , and if $\nabla f(x^*) = 0$ and moreover • either $Hf(x^*)$ is positive definite $\leftarrow f(x) - x^2$ \triangleright either f is twice differentiable in a neighborhood V of x^* and Hf(x) is positive semi definite on $V \leftarrow g(x) = x^4$ then x^* is a strict (isolated) minimizer of f on V. $f(x^{*} + \lambda(x - x^{*})) - f(x^{*}) = \frac{1}{2}\lambda^{2} < Hf(x^{*} + Jt(x - x^{*}))(x - x^{*}) = \frac{1}{2}\lambda^{2} < Hf(x^{*} + Jt(x - x^{*}))(x - x^{*})$ with T. CTO, I for 2 Jonal enough 2++2(x x+) EV f(x+y)(x+y)) - f(x+z) = 0 z+boolminnen

・ロト・日本・日本・日本・日本・日本

Uniqueness condition in the convex case
$$f(x^{+}) \geq f(x)$$
 on V ner quiet and $f(y) \leq f(x^{+})$ for $f(x^{+} + \lambda(y^{-}x)) = f(\lambda y + (i-\lambda)x^{+}) \leq \lambda f(y) + (i-\lambda)f(x^{+})$ $\lambda \in [0, 1]$
for λ much enough $f(x^{+} + \lambda(y^{-}x^{+})) \geq f(x^{+})$
 $f(x^{+}) \leq \lambda f(y) + (i-\lambda)f(x^{+}) = \lambda f(x^{+}) \leq \lambda f(y) + (i-\lambda)f(x^{+}) = \lambda f(x^{+}) \leq \lambda f(y) + (i-\lambda)f(x^{+}) \leq \lambda f(x^{+}) \leq \lambda f(y) = \lambda f(x^{+}) \leq \lambda f(y) + (i-\lambda)f(x^{+}) \leq \lambda f(y) = \lambda f(x^{+}) \leq \lambda f(x) = \lambda$

Necessary and sufficient optimality condition in the convex case $= x^{\#} \text{ global minimum, local =} \sqrt{f(x^{*})} = 0$ $\neq \sqrt{f(x^{*})} = 0 \text{ and } f(x^{*}) = 0 \text{ for } x^{*} = \sqrt{f(x^{*})} = 0$

If *f* is convex on \mathbb{R}^n and C^1 , $x^* \in \mathbb{R}^n$ realizes a global minimum of *f* if and only if $\nabla f(x^*) = 0$.