Outline

Numerical methods for optimisation
 Marie Postal
 Laboratoire Jacques-Louis Lions
 Sorbonne Université
 AIMS Master 2023-2024

Course goals and terms
Introduction to Optimization
Reminders: Differential calculus
Convexity
Unconstrained optimisation
Optimisation with constraints

We consider :
a function $v: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ twice differentiable on \mathbb{R}^{n}, with Jacobian matrix $J(x)$,
a positive definite symmetric matrix $A \in \mathbb{R}^{p \times p}$, and the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by

$$
f(x)=\langle A v(x), v(x)\rangle
$$

The gradient of $f(x)$ is
A) $\nabla f(x)=\left(J^{\top}+J\right) A v(x)$
B) $\nabla f(x)=2 J^{\top} A v(x)$
C) $\nabla f(x)=J\left(A+A^{T}\right) v(x)$

Answer question 285 on https://toreply.univ-lille.fr

The graph represents the isovalues of
A) $f(x)=x_{1}+x_{2}$
B) $f(x)=x_{1} x_{2}$
C) $f(x)=x_{1}^{2}-x_{2}^{2}$

Answer question 131 on https://toreply.univ-lille.fr

$$
f(x)=\frac{1}{2}\left(x_{1}-x_{2}\right)^{2}+\frac{1}{2}\left(x_{2}+1\right)^{2}
$$

The hessian matrix of f is
A) $H f(x)=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$.
B) $H f(x)=\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)$.
C) $H f(x)=\left(\begin{array}{cc}1 & -1 \\ -1 & 2\end{array}\right)$.

Answer question 221 on https://toreply.univ-lille.fr

Epigraph

1. Definition of $C_{\alpha}=\{x \in \operatorname{dom} f, f(x) \leq \alpha\}$ the level sets of a convex function are convex

Epigraph

1. Definition of $C_{\alpha}=\{x \in \operatorname{dom} f, f(x) \leq \alpha\}$ the level sets of a convex function are convex
2. Defining the epigraph of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
\text { epi } f=\left\{(x, t) \in \mathbb{R}^{n+1}, x \in \operatorname{dom} f, f(x) \leq t\right\}
$$

f convex if and only if epi f is convex

Convexity of a differentiable function

Property : Let f be a function defined on a real-valued differentiable convex $C \subset \mathbb{R}^{n}$. The function f is

1. convex if and only if

$$
\forall(x, y) \in C^{2},\langle\nabla f(x), y-x\rangle \leq f(y)-f(x)
$$

Convexity of a differentiable function

Property : Let f be a function defined on a real-valued differentiable convex $C \subset \mathbb{R}^{n}$. The function f is

1. convex if and only if

$$
\forall(x, y) \in C^{2},\langle\nabla f(x), y-x\rangle \leq f(y)-f(x) .
$$

2. convex if and only if

$$
\forall(x, y) \in C^{2},\langle\nabla f(x)-\nabla f(y), x-y\rangle \geq 0 .
$$

Convexity of a differentiable function

Property : Let f be a function defined on a real-valued differentiable convex $C \subset \mathbb{R}^{n}$. The function f is

1. convex if and only if

$$
\forall(x, y) \in C^{2},\langle\nabla f(x), y-x\rangle \leq f(y)-f(x) .
$$

2. convex if and only if

$$
\forall(x, y) \in C^{2},\langle\nabla f(x)-\nabla f(y), x-y\rangle \geq 0 .
$$

3. strictly convex if and only if

$$
\forall(x, y) \in C^{2}, x \neq y,\langle\nabla f(x), y-x\rangle<f(y)-f(x)
$$

Strong convexity

Definition : Let $K \subset V$ be a convex. A function $f: K \rightarrow \mathbb{R}$ is said to be strongly convex or uniformly convex or α-convex or α-elliptical if there exists $\alpha>0$ such that

$$
\begin{aligned}
& \forall(x, y) \in K^{2}, \forall \lambda \in[0,1], \\
& f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)-\frac{\alpha}{2} \lambda(1-\lambda)\|x y\|^{2} .
\end{aligned}
$$

Characterization of strong convexity

1. If $f: V \rightarrow \mathbb{R}$ is continuous, the following properties are equivalent
$1.1 f$ is α-elliptical
1.2 For all $(x, y) \in V^{2}, f\left(\frac{x+y}{2}\right) \leq \frac{f(x)+f(y)}{2}-\frac{\alpha}{8}\|x y\|^{2}$
2. If $f: V \rightarrow \mathbb{R}$ is differentiable, the following properties are equivalent
$2.1 f$ is α-elliptical
2.2 For all $(x, y) \in V^{2}, f(y) \geq f(x)+\langle\nabla f(x), y x\rangle+\frac{\alpha}{2}\|x y\|^{2}$
2.3 For all $(x, y) \in V^{2},\langle\nabla f(y)-\nabla f(x), y-x\rangle \geq \alpha\|x-y\|^{2}$

Convexity of a twice differentiable function

$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ twice differentiable on dom f convex, Hessian matrix $H f(x) \in S^{n}$ (or sometimes $\nabla^{2} f(x)$

- f is convex iff $\operatorname{Hf}(x) \in S_{+}^{n} \quad \forall x \in \operatorname{dom} f$ (positive semi-definite)
- if $H f(x) \in S_{++}^{n} \quad \forall x \in \operatorname{dom} f$ (positive definite) then f is strictly convex

Characterization of the strong convexity of a twice differentiable function

If $f: V \rightarrow \mathbb{R}$ is twice differentiable, the following properties are equivalent

1. f is α-elliptical
2. For all $(x, h) \in V^{2},\langle\mathrm{H} f(x) h, h\rangle \geq \alpha\|h\|^{2}$

Examples

Quadratic function

$$
f(x)=\frac{1}{2} x^{t} P x+q^{t} x+r
$$

with $P \in S^{n}$
Least squares $f(x)=\|A x-b\|_{2}^{2}$
Quadratic on linear $f(x, y)=x^{2} / y$ on $\mathbb{R} \times \mathbb{R}^{+\star}$

Practical methods to show that a function is convex

- Check definition (Jensen)
- Check definition on lines
- For twice differentiable functions, show that the Hessian is positive
- Show that the function is obtained from convex functions by operations which preserve convexity

Linear operations

- Multiplication of f by a positive constant
- Sum (finite or infinite, integral)
- Composition with an affine function

Examples

- Logarithmic barriers for affine inequalities

$$
\begin{aligned}
f(x) & =-\sum_{i=1}^{m} \log \left(b_{i}-a_{i}^{t} x\right) \\
\operatorname{dom} f & =\left\{x, a_{i}^{t} x<b_{i}, i=1, \text { Idots, } m\right\}
\end{aligned}
$$

- Norm of an affine function

