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Course goals and terms

Introduction to Optimization

Reminders : Differential calculus

Convexity

Unconstrained optimisation
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We consider :
a function v : Rn → Rp twice differentiable on Rn, with Jacobian
matrix J(x),
a positive definite symmetric matrix A ∈ Rp×p,
and the function f : Rn → R defined by

f (x) = ⟨Av(x), v(x)⟩.

The gradient of f (x) is
A) ∇f (x) = (JT + J)Av(x)
B) ∇f (x) = 2JT Av(x)
C) ∇f (x) = J(A + AT )v(x)

Answer question 285 on https://toreply.univ-lille.fr



The graph represents the isovalues of
A) f (x) = x1 + x2

B) f (x) = x1x2

C) f (x) = x2
1 − x2
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Answer question 131 on https://toreply.univ-lille.fr



f (x) =
1
2
(x1 − x2)

2 +
1
2
(x2 + 1)2.

The hessian matrix of f is

A) Hf (x) =
(

1 0
0 0

)
.

B) Hf (x) =
(

1 0
0 2

)
.

C) Hf (x) =
(

1 −1
−1 2

)
.

Answer question 221 on https://toreply.univ-lille.fr



Epigraph

1. Definition of C↵ = {x 2 dom f , f (x)  ↵}
the level sets of a convex function are convex

2. Defining the epigraph of f : Rn ! R

epi f = {(x , t) 2 Rn+1, x 2 dom f , f (x)  t}

f convex if and only if epi f is convex

123



Epigraph

1. Definition of C↵ = {x 2 dom f , f (x)  ↵}
the level sets of a convex function are convex

2. Defining the epigraph of f : Rn ! R

epi f = {(x , t) 2 Rn+1, x 2 dom f , f (x)  t}

f convex if and only if epi f is convex

123



Convexity of a differentiable function

Property : Let f be a function defined on a real-valued
differentiable convex C ⇢ Rn. The function f is

1. convex if and only if
8(x , y) 2 C2, hrf (x), y � xi  f (y) � f (x).

2. convex if and only if
8(x , y) 2 C2, hrf (x) �rf (y), x � yi � 0.

3. strictly convex if and only if
8(x , y) 2 C2, x 6= y , hrf (x), y � xi < f (y) � f (x).
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Strong convexity

Definition : Let K ⇢ V be a convex. A function f : K ! R is said
to be strongly convex or uniformly convex or ↵-convex or
↵-elliptical if there exists ↵ > 0 such that

8(x , y) 2 K 2, 8� 2 [0, 1],

f (�x + (1 � �)y)  �f (x) + (1 � �)f (y) � ↵

2
�(1 � �)||xy ||2.
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Characterization of strong convexity

1. If f : V ! R is continuous, the following properties are
equivalent
1.1 f is ↵-elliptical

1.2 For all (x , y) 2 V 2, f
✓

x + y
2

◆
 f (x) + f (y)

2
� ↵

8
||xy ||2

2. If f : V ! R is differentiable, the following properties are
equivalent
2.1 f is ↵-elliptical
2.2 For all (x , y) 2 V 2, f (y) � f (x) + hrf (x), yxi +

↵

2
||xy ||2

2.3 For all (x , y) 2 V 2, hrf (y) �rf (x), y � xi � ↵||x � y ||2
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Convexity of a twice differentiable function

f : Rn ! R twice differentiable on dom f convex, Hessian matrix
Hf (x) 2 Sn (or sometimes r2f (x)

I f is convex iff Hf (x) 2 Sn
+ 8x 2 domf (positive

semi-definite)
I if Hf (x) 2 Sn

++ 8x 2 domf (positive definite) then f is
strictly convex
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Characterization of the strong convexity of a twice
differentiable function

If f : V ! R is twice differentiable, the following properties are
equivalent

1. f is ↵-elliptical
2. For all (x , h) 2 V 2, hH f (x)h, hi � ↵||h||2
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Examples

Quadratic function

f (x) =
1
2

xtPx + qtx + r

with P 2 Sn

Least squares f (x) = ||Ax � b||22
Quadratic on linear f (x , y) = x2/y on R ⇥ R+?
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Practical methods to show that a function is convex

I Check definition (Jensen)
I Check definition on lines
I For twice differentiable functions, show that the Hessian is

positive
I Show that the function is obtained from convex functions

by operations which preserve convexity
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Linear operations

I Multiplication of f by a positive constant
I Sum (finite or infinite, integral)
I Composition with an affine function
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Examples

I Logarithmic barriers for affine inequalities

f (x) = �
mX

i=1

log(bi � at
i x),

dom f = {x , at
i x < bi , i = 1, ldots, m}

I Norm of an affine function
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