$L: E \rightarrow F$, linear with E and F nus

$$
\begin{array}{cl}
L(\lambda \vec{\mu}+\mu \vec{v})=\lambda L(\vec{u})+\mu L(\vec{v}) \\
L(\mu+h)=L(\mu)+\overline{p L(\mu)}(h) & +\sigma(\|h\|) \\
L(\mu+h)=L(u)+\overline{L(h)} & +\sigma(u g \pi i) \\
0 L(u)=L
\end{array}
$$

$A: E \rightarrow F$, affine: $A(x)=L(x)+b$ with linear L and $b \in F$

$$
\begin{gathered}
A(u+h)=A(u)+D A(u)(h)+o(\|h\|) \\
D A / a)=2
\end{gathered}
$$

$$
f(X)=\|X\|_{2}^{2} \text {, with } X \in \mathbb{R}^{n}
$$

$$
\begin{aligned}
& \|x+h\|_{2}^{2}=\|x\|_{2}^{2}+D(\|)(x)(h)+o(\| Q, 1) \\
& \|x+h\|^{2}=\|x\|^{2}+\underbrace{2 \alpha x, h\rangle}+\underbrace{\|h\|^{2}}_{\theta(\|Q\| \|)} \\
& D_{\|,\| l}(x)(h)=2\langle x, h\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{R} \longleftrightarrow \alpha(\mathbb{R}) \forall L \in L\left(\mathbb{R}^{n}\right) \vec{v}(\vec{v}) \\
& \vec{v} \longleftrightarrow L, \forall x)=\langle\vec{v})
\end{aligned}
$$

$D_{\| l}(x)(h)=\langle 2 x \text {, h> }\rangle_{H^{2}}$ thenefore ore an itentify $p_{1 i}(x)$ to $2 x$

$$
\nabla f(x)=2 x
$$

$\begin{aligned} & \text { Example } 5 R^{2} \rightarrow \mathbb{R} \\ & f \text { is notr differentaber } \\ & \text { de cause fiss not contimous }\end{aligned} \quad f\left(x_{1}, x_{2}\right)=\left\{\begin{array}{l}0 \text { on }(0,0) \\ \frac{x_{1} x_{2}}{x_{1}^{2}+x_{2}^{2}}\end{array}\right.$ Le cause $f_{i n}$ is not contimous

$$
\begin{aligned}
& f(h, h)=\frac{h^{2}}{h^{2}+h^{2}} \quad \text { for } h \neq 0 \\
&=\frac{1}{2} \nless 0 \\
& h \rightarrow 0
\end{aligned}
$$

Example 6 exencise

Example 7 exencise

Example $f(x)=\|A x+b\|^{2}$ with $A \in M_{m \times n}(\mathbb{R}), x \in \mathbb{R}^{n}$,

$$
\begin{aligned}
& b \in \mathbb{R}^{m} \quad\|A(x+h)+b\|^{2}=\|A x+b\|^{2}+D f(x)(h)+\text { of } \|(a \|) \\
& \text { - }\|A(x+b)+b\|^{2}=\|(A x+b)+A h\|^{2}=\|A x+b\|^{2}+2\langle A x+b, A h\rangle \\
& \left.\langle A \vec{u}, \vec{v}\rangle=\left\langle\vec{u}, A^{\top} \vec{v}\right\rangle \quad+H A h\right)^{2} \\
& \Delta=\|A \alpha+b\|^{2}+2\left\langle A^{\top}(A x+b), a\right\rangle+\|A h\|^{2}=0(\|a\|) \\
& \operatorname{Df}(x)(h)=2\left\langle A^{\top}(A x+b), b\right\rangle \\
& \|A G\|^{2}=\|A A\|^{2} \mid\left(\operatorname{len} \|^{2}\right. \\
& \frac{\|A Q\|^{2}}{\|R\|} \leq \underset{\|A\|^{2} \|}{\|R\|} \underset{\| \rightarrow 0}{\|R\|} \\
& \nabla f(x)=2 A^{T}(A x+b) \\
& D f(x)(h)=\langle\nabla f(x), h\rangle
\end{aligned}
$$

Example $f(x)=\frac{\langle A x, x\rangle}{\|x\|_{2}^{2}}$ with $x \in \mathbb{R}^{n}$ and $A \in S^{n} x=0_{\mathbb{R}^{n}} 0_{\text {deictic }}$

$$
\begin{aligned}
& \frac{\langle A(x+h), x+h\rangle}{\| x+h)^{2}}=\frac{\langle A x, x\rangle}{\|h\|^{2}}+D g(x)(h)+\theta(\|h\|) \\
&\langle A x+A h, x+h\rangle=\langle A x, x\rangle+2 A x, h\rangle+\langle A h, x\rangle+\langle A h, h\rangle \\
&=\left\langle A x_{1} x\right\rangle+2\langle A x, h\rangle+\langle A h, h\rangle
\end{aligned}
$$

$$
\|x\|^{2}
$$

$$
\begin{aligned}
& \|x+h\|^{2}=\|x\|^{2}+2\langle x, h\rangle+\|a\|^{2} \\
& f(x+h)=\frac{\left.\left\langle A x_{1} x\right\rangle+2 \alpha A x, h\right\rangle+\left\langle\left\langle A h^{2}\right\rangle\right.}{\|x\|^{2}\left(1+2\left\langle\frac{2 x, h}{\left\|h_{1}\right\|^{2}}+\frac{\|h\|^{2}}{\|x\|^{2}}\right)\right.} \quad \frac{1}{1+\varepsilon}=1-\varepsilon+Q(\varepsilon)
\end{aligned}
$$

$$
\begin{aligned}
& D f(x)(h)=2\left\langle A x-\langle A x, x\rangle x /\|x\|^{2}, h\right\rangle,-2 \frac{\langle A h}{\|x\|^{2}} \frac{\|\rangle}{\|} \frac{x, d y}{\|x\|^{2}}
\end{aligned}
$$

Definition of the gradient for a real function

$$
2\left(\mathbb{R}^{n}\right) \longleftrightarrow \mathbb{R}^{n}
$$

If V is a Hebert space, if f is differentiable the Riesz representation theorem leads to the definition of the gradient of $f: \nabla f(x) \in V$

$$
\langle\nabla f(x), y\rangle=\operatorname{Df}(x) y .
$$

$\nabla f(x)$ is the unique vector associated with $D f(x)$ by the Rieeztheoram
the gradient is also ter rector of then partial derivative

Definition of the gradient for a real function

If V is a Hibert space, if f is differentiable, the Riesz representation theorem leads to the definition of the gradient of $f: \nabla f(x) \in V$

$$
\langle\nabla f(x), y\rangle=D f(x) y
$$

Directional derivative of f in the direction $d \in \mathbb{R}^{n}$

$$
\begin{gathered}
\lim _{\alpha \rightarrow 0} \frac{f(x+\alpha d)-f(x)}{\alpha}=\langle\nabla f(x), d\rangle . \\
\left.f(x+\alpha d)=f(x)+D f(x)(\alpha d)+\theta(\|\alpha d\|)_{n}\right) \\
=\frac{f(x)+\langle\nabla f(x), \alpha d\rangle+\theta\left(\| \alpha_{n}\right)}{\alpha}=\langle\nabla f(x), d\rangle+\frac{\theta(\alpha \| d(1)}{\alpha}->0 \\
\frac{f(x+\alpha d)-f(x)}{\alpha} 00
\end{gathered}
$$

Definition of the gradient for a real function

- If V is a Hibert space, if f is differentiable, the Riesz representation theorem leads to the definition of the gradient of $f: \nabla f(x) \in V$

$$
\langle\nabla f(x), y\rangle=D f(x) y
$$

- Directional derivative of f in the direction $d \in \mathbb{R}^{n}$

$$
\lim _{\alpha \rightarrow 0} \frac{f(x+\alpha d)-f(x)}{\alpha}=\langle\nabla f(x), d\rangle
$$

- Direction of descent $d \in \mathbb{R}^{n}$ af x

$$
\langle\nabla f(x), d\rangle<0
$$

Why is it called a direction of descent?

$$
\begin{aligned}
& f(x+\alpha d)=f(x)+\alpha\langle\nabla f(x), d\rangle+\theta(\alpha) \\
& \frac{f(x+\alpha d)-f(x)}{\alpha}=\frac{\langle\nabla f(x), d\rangle}{\langle 0}+\frac{\theta(\alpha)}{\alpha \searrow} \\
& \left.\exists \alpha_{0}\right\rangle \text { set. } \forall \alpha<\alpha_{6} \quad\left\langle\nabla f(x), d>+\frac{a(\alpha)>00}{\alpha}<0\right. \\
& f(x+\alpha d)<f^{\alpha}(x)
\end{aligned}
$$

$g(\alpha)=f(x+\alpha d)$ is a scalar fondion

on the interval $] 0, \alpha_{0}\left[g(\alpha)<g(0)^{\circ}\right.$

Definition of the gradient for a function of \mathbb{R}^{n} in \mathbb{R}

- $\frac{\partial f(x)}{\partial x_{j}}=D f(x)\left(e_{i}\right)$
$f: \mathbb{R} \rightarrow \mathbb{R}$
definitou if is montornous on an intenvol I If f is decreasung on I or f is inreanugo I

2) f is specreseaning on I iff
\& $x<y \quad x, y \in I$

$$
\hat{f}(x)>f(y)
$$

Definition of the gradient for a function of \mathbb{R}^{n} in \mathbb{R}

- $\frac{\partial f(x)}{\partial x_{j}}=\operatorname{Df}(x)\left(e_{i}\right)$
- If $V=\mathbb{R}^{n}$, the gradient is the vector of partial derivatives
$\left(\frac{\partial f(x)}{\partial x_{j}}\right)_{j=1, \ldots n}$.

Definition of the gradient for a function of \mathbb{R}^{n} in \mathbb{R}

- $\frac{\partial f(x)}{\partial x_{j}}=\operatorname{Df}(x)\left(e_{i}\right)$
- If $V=\mathbb{R}^{n}$, the gradient is the vector of partial derivatives $\left(\frac{\partial f(x)}{\partial x_{j}}\right)_{j=1, \ldots n}$.
- A function $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to be of class C^{k} if all its partial derivatives up to order k exist and are continuous on U

Example 1: $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, f(x)=\langle A x, x\rangle \quad A \in \mathcal{M}_{n \times n}(\mathbb{R})$

$$
\begin{aligned}
& \langle A(x+h), x+h\rangle=\langle A x, x\rangle+\langle A x, h\rangle+\langle x, A h\rangle \\
& =\left\langle A x_{1} x\right\rangle+2 \underbrace{\left.\left(A+A^{\top}\right) x, h\right\rangle}+\langle\underbrace{\left\langle h_{1} A h\right\rangle}\rangle \\
& +\left\langle h_{1} A h\right\rangle \\
& =f(x)+\langle\nabla f(x), h\rangle+\underbrace{}_{\text {OR\|R\| }}\rangle \\
& \nabla f(x)=\left(A+A^{\top}\right) x \text { if } A \in S_{n}(\mathbb{R}) \text { (symetiv) } \\
& \text { then } \nabla f(x)=2 A x
\end{aligned}
$$

Example 2: $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, expand the sum

$$
\begin{aligned}
& f(x)=\sum_{i=2}^{n}\left(x_{i}-x_{i-1}\right)^{2}=\left(x_{2}-x_{1}\right)^{2}+\ldots+\left(x_{i}-x_{i-1}\right)^{2}+\left(x_{i+1}-x_{i}\right)^{2} \\
& +\cdots+\left(x_{n}-x_{n-1}\right)^{2} \\
& \left.\begin{array}{l}
i=1 \\
\frac{\partial f}{\partial x_{1}}= \\
f r i=2\left(x_{1}-x_{2}\right) \\
\frac{\partial f}{\partial x_{i}}=2\left(x_{i}-x_{i-1}\right)+2\left(x_{i}-x_{i+1}\right) \\
i=n \\
\frac{\partial f}{\partial x_{n}}=2\left(2 x_{i}-x_{i-1}-x_{i+1}\right)
\end{array} \right\rvert\, \nabla f(x)=2\left(\begin{array}{c}
x_{1}-x_{2} \\
2 x_{2}-x_{1}-x_{3} \\
\vdots \\
2 x_{i}-x_{i-1}-x_{i+1} \\
\vdots \\
\vdots \\
2 x_{n-1}-x_{n}-x_{n-2} \\
x_{n}-x_{n-1}
\end{array}\right)
\end{aligned}
$$

Example 3: $f(x, y)=\langle A x, x\rangle+\langle y, B x\rangle$
$A \in \mathcal{M}_{n \times n}(\mathbb{R}), B \in \mathcal{M}_{m \times n}(\mathbb{R}), f: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$

$$
\begin{aligned}
& \text { Calculate } \nabla_{x} f \text { and } \nabla_{y} f(\\
& f(x+h, y)\left.=f(x, y)+\left\langle\nabla_{x} f(x, y), h\right\rangle+\theta(\| a n)\right) \\
&\langle A(x+h), x+h\rangle\left.\left.+\langle y, B(x+h)\rangle=\langle A x, x\rangle+2(A\rangle A^{\top}\right) x, h\right\rangle+\langle A h, h\rangle \\
&+\langle y, B x\rangle+2 y, B h\rangle \\
&\left.\left.=\langle A x, x\rangle+2 y_{y}, B x\right\rangle+\left\langle\left(A+A^{\top}\right) x+B^{\top} y, h\right\rangle+\alpha A h, h\right\rangle \\
& \nabla_{x} f(x, y)=\left(A+A^{\top}\right) \alpha+B^{\top} y \\
& f(x, y+h)=\langle A x, x\rangle+\langle y+h, B x\rangle=\langle A x, x\rangle+\langle y, B x\rangle \\
&=f(x, y)+\langle B x, h\rangle \quad+2 h, B x\rangle
\end{aligned}
$$

$$
\nabla_{y} f(x, y)=B x
$$

apply the rule sou office
funchon since funchon since $f(x, y)$ is affine in y

Jacobian matrix definition

E and F nvs, dimensions n and m, bases \mathcal{B} and \mathcal{B}^{\prime}.
Let $U \subset E$ be open and $f: U \rightarrow F, f(x)=\left(f_{1}(x), \ldots, f_{m}(x)\right)$ differentiable in $a \in U$.
$D f(a) \in \mathcal{L}(E, F)$ so there is a unique Jacobian matrix $J f(a), m \times n$, which represents $\operatorname{Df}(a)$ in bases \mathcal{B} and \mathcal{B}^{\prime}.
Let $h=\left(h_{1}, \ldots, h_{n}\right) \in E$ we have $D f(a) . h=J f(a) h$.
$D f(a)=\left(\begin{array}{c}D f_{1}(a) \\ \vdots \\ D f_{m}(a)\end{array}\right)$, i.e. $D f(a) h=\left(\begin{array}{c}D f_{1}(a) h \\ \vdots \\ D f_{m}(a) h\end{array}\right)=J_{f}(a)\left(\begin{array}{c}h_{1} \\ \vdots \\ h_{n}\end{array}\right)$.
The j th column vector of $J_{f}(a)$ is the vector $\left(\begin{array}{c}D f_{1}(a) e_{j} \\ \vdots \\ D f_{m}(a) e_{j}\end{array}\right)$
(with $\left.\left(e_{j}\right)_{m}=\delta_{j m}\right)$, and $D f_{i}(a) e_{j}=\frac{\partial f_{i}}{\partial x_{j}}(a), \quad J f(a) \in d 0_{a \sim \times u}(\mathbb{R})$

Relation between gradient and Jacobian matrix

$$
f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R} \Rightarrow \nabla f_{i} \in \mathbb{R}^{n}
$$

E nvs, dimensions n, base \mathcal{B}.
$U \subset E$ open and $f: U \rightarrow \mathbb{R}^{m}, f(x)=\left(f_{1}(x), \ldots, f_{m}(x)\right)$ differentiable in $a \in U$.

$$
J f(a)=\left(J f(a)_{i, j}\right)_{\substack{i=1, \ldots, m \\
j=1, \ldots, n}}=\left(\frac{\partial f_{i}}{\partial x_{j}}\right)_{\substack{i=1, \ldots, m \\
j=1, \ldots, n}}=\left(\begin{array}{c}
\nabla f_{1}(x)^{t} \\
\vdots \\
\nabla f_{m}(x)^{t}
\end{array}\right) \begin{aligned}
& \text { m rows } \\
& n \text { columns }
\end{aligned}
$$

Taylor formulas at 1st order

$$
f(x \cdot d)=f(x)+\langle\nabla p(x), d\rangle+\theta(\mid 1 d a)
$$

Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ differentiable on S centered at x. For all $d \in \mathbb{R}^{n}$ t.q. $x+d \in S$ there is $\left.\alpha \in\right] 0,1[$ t. q.

$$
f(x+d)=f(x)+\langle\nabla f(x+\alpha d), d\rangle .
$$

the value of α is not -known and de pants on x and

$$
f(x-d)=f(x)+\langle\nabla f(x-\beta d), d\rangle
$$

with $\beta \in] 0,1[$

Second-order Taylor formula

Definition : Let f be a differentiable function on $V . f$ is twice differentiable at a if there exists a linear map $L(a): V \rightarrow V^{\prime}$ such that

$$
D f(a+h)=D f(a)+L(a) h+o\left(\|h\|_{V}\right) \in V^{\prime}
$$

where V^{\prime} denotes the topological dual of V. The second differential of f, denoted $D^{2} f(a)$, is the map $L(a): V \rightarrow V^{\prime}$

Second-order Taylor formula in \mathbb{R}^{n} Schwarz thesem.

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a twice differentiable function. $\nabla f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a function from \mathbb{R}^{n} to \mathbb{R}^{n}. If ∇f is differentiable we identify $d^{2} f(x)$ with the Hessian matrix $\operatorname{Hf}(x)$, defined by $H f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n \times n}$

$$
H f(x)=\left(\frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{j}}\right)_{i, j=1, \ldots n}
$$

Schwarz's theorem: If the function f is twice differentiable, its Hessian matrix is symmetric.

Relation between Hessian and Jacobian matrices

The Hessian matrix of $f(x)$ is the Jacobian matrix of $\operatorname{Df}(x)$

