
L : E ! F , linear with E and F nvs

62

Postel

Postel

Postel

Postel



A : E ! F , affine: A(x) = L(x) + b with linear L and
b 2 F
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f (X ) = ||X ||22, with X 2 Rn
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Example 5
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Example 6
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Example 7

67

Postel



Example f (x) = ||Ax + b||2 with A 2 Mm⇥n(R), x 2 Rn,
b 2 Rm
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Example f (x) = hAx ,xi
||x ||22

with x 2 Rn and A 2 Sn, x 6= 0Rn
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Definition of the gradient for a real function

I If V is a Hibert space, if f is differentiable, the Riesz
representation theorem leads to the definition of the
gradient of f : rf (x) 2 V

hrf (x), yi = Df (x)y .

I Directional derivative of f in the direction d 2 Rn

lim
↵!0

f (x + ↵d)� f (x)
↵

= hrf (x), di.

I Direction of descent d 2 Rn

hrf (x), di < 0.

70

Postel

Postel



Definition of the gradient for a real function

I If V is a Hibert space, if f is differentiable, the Riesz
representation theorem leads to the definition of the
gradient of f : rf (x) 2 V

hrf (x), yi = Df (x)y .

I Directional derivative of f in the direction d 2 Rn

lim
↵!0

f (x + ↵d)� f (x)
↵

= hrf (x), di.

I Direction of descent d 2 Rn

hrf (x), di < 0.

70

Postel



Definition of the gradient for a real function

I If V is a Hibert space, if f is differentiable, the Riesz
representation theorem leads to the definition of the
gradient of f : rf (x) 2 V

hrf (x), yi = Df (x)y .

I Directional derivative of f in the direction d 2 Rn

lim
↵!0

f (x + ↵d)� f (x)
↵

= hrf (x), di.

I Direction of descent d 2 Rn

hrf (x), di < 0.

70

Postel

Postel

Postel



Why is it called a direction of descent ?
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Definition of the gradient for a function of Rn in R

I @f (x)
@xj

= Df (x)(ei)

I If V = Rn, the gradient is the vector of partial derivatives✓
@f (x)
@xj

◆

j=1,...n
.

I A function f : U ⇢ Rn ! R is said to be of class Ck if all its
partial derivatives up to order k exist and are continuous
on U
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Example 1: f : Rn ! R, f (x) = hAx , xi
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Example 2: f : Rn ! R, f : Rn ! R,
f (x) =

Pn
i=2(xi � xi�1)2
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Example 3: f (x , y) = hAx , xi+ hy ,Bxi
A 2 Mn⇥n(R), B 2 Mm⇥n(R), f : Rn ⇥ Rm ! R
Calculate rx f and ry f
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Jacobian matrix definition
E and F nvs, dimensions n and m, bases B and B0.
Let U ⇢ E be open and f : U ! F , f (x) = (f1(x), . . . , fm(x))
differentiable in a 2 U.
Df (a) 2 L(E ,F ) so there is a unique Jacobian matrix Jf (a), m ⇥ n,
which represents Df (a) in bases B and B0.
Let h = (h1, . . . , hn) 2 E we have Df (a).h = Jf (a)h.

Df (a) =

0

B@
Df1(a)

...
Dfm(a)

1

CA, i.e. Df (a)h =

0

B@
Df1(a)h

...
Dfm(a)h

1

CA = Jf (a)

0

B@
h1
...

hn

1

CA.

The j th column vector of Jf (a) is the vector

0

B@
Df1(a)ej

...
Dfm(a)ej

1

CA

(with (ej)m = �jm), and Dfi(a)ej =
@fi
@xj

(a),

or Jf (a) = (Jf (a)i,j)i=1,...,m
j=1,...,n

= (
@fi
@xj

)i=1,...,m
j=1,...,n
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Relation between gradient and Jacobian matrix

E nvs, dimensions n, base B.
U ⇢ E open and f : U ! Rm, f (x) = (f1(x), . . . , fm(x))
differentiable in a 2 U.

Jf (a) = (Jf (a)i,j)i=1,...,m
j=1,...,n

= (
@fi
@xj

)i=1,...,m
j=1,...,n

=

0

B@
rf1(x)t

...
rfm(x)t

1

CA
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Taylor formulas at 1st order

Let f : Rn �! R differentiable on S centered at x . For all
d 2 Rn t.q. x + d 2 S there is ↵ 2 [0, 1] t. q.

f (x + d) = f (x) + hrf (x + ↵d), di.
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Second-order Taylor formula

Definition : Let f be a differentiable function on V . f is twice
differentiable at a if there exists a linear map L(a) : V ! V 0

such that

Df (a + h) = Df (a) + L(a)h + o(||h||V ) 2 V 0,

where V 0 denotes the topological dual of V . The second
differential of f , denoted D2f (a), is the map L(a) : V ! V 0
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Second-order Taylor formula in Rn

Let f : Rn ! R be a twice differentiable function. rf : Rn ! Rn

is a function from Rn to Rn. If rf is differentiable we identify
d2f (x) with the Hessian matrix Hf (x), defined by
Hf : Rn ! Rn⇥n

Hf (x) =
✓
@2f (x)
@xi@xj

◆

i,j=1,...n
.

Schwarz’s theorem: If the function f is twice differentiable, its
Hessian matrix is symmetric.
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Relation between Hessian and Jacobian matrices

The Hessian matrix of f (x) is the Jacobian matrix of Df (x)
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