Outline

Numerical methods for optimisation

Marie Postal

Laboratoire Jacques-Louis Lions Sorbonne Université
AIMS Master 2023-2024
posted. pages. moth. cars. fr/aims
SORBONNE UNIVERSITÉ

Course goals and terms

Introduction to Optimization
Reminders: Differential calculus

Convexity

Unconstrained optimisation

Practical issues

- Final grade : weighted sum of following grades
- Python and math team assignments (at least 3)
- Final written exam (2 hours 16/02)
- There will be at least 3 Python hands on sessions in place of regular classes
- Each hands on session will be followed by an evening session to complete the program before handing it in

Course objective

- Introduction to numerical methods of Optimization
- Improve programming skills
- Implementation and test of algorithms

Why Python 3.1

- Ideal for building algorithm prototypes
- Flexible interactive graphics
- Widely used in business and all scientific sectors
- Performance worse than in a compiled language of high level (C++, Fortran)

Course map

- Introduction
- Introduction of Optimization
- Differential calculus revisions
- Convexity revisions
- Numerical approximation of derivatives
- Un-constrained Continuous Optimization
- Optimality conditions
- Nonlinear equations (Fixed point, Newton and Quasi-Newton)
- Descent/Gradient algorithms
- Constrained Continuous Optimization
- Duality
- Optimality conditions with equality constraints
- SQP algorithm
- Optimality conditions with inequality constraints
- Uzawa algorithm

Course goals and terms

Introduction to Optimization

Reminders : Differential calculus
Convexity
Unconstrained optimisation
Optimisation with constraints

Different categories of optimization

- Discrete optimization : variables in a discrete set
- Combinatorial <-> linear programming
- "NP-complete" (nondeterministic polynomial-time complete)
- Logistics, Economy (Traveling salesman, Knapsack, etc.)
- Heuristic methods : Hill climbing, Simulated annealing, Ant colony, etc.
- Continuous optimization : variables within a range of values
- Infinite dimensions: calculus of variations, shape optimization, control theory
- Finite dimension : includes the discretization of above problems

Definition of a minimum

Def : Let $f: V \rightarrow \mathbb{R}$ with V normed vector space.
$x^{\star} \in D_{a} \subset V$ achieves

- a local minimum on D_{a} if there exists $\varepsilon>0$ such that

$$
f\left(x^{\star}\right) \leq f(x) \quad \text { for all } \quad x \in D_{a} \quad \text { t.q. }\left\|x-x^{\star}\right\| \leq \varepsilon .
$$

- a strict local minimum if there exists $\varepsilon>0$ such that

$$
f\left(x^{\star}\right)<f(x) \quad \text { for all } \quad x \in D_{a} \quad \text { s. t. } x \neq x^{\star} \text { and }\left\|x-x^{\star}\right\| \leq \varepsilon .
$$

Definition of a minimum

Def : $x^{\star} \in D_{a}$ achieves

- a global minimum on D_{a} if

$$
f\left(x^{\star}\right) \leq f(x) \quad \text { for all } \quad x \in D_{a} .
$$

- a strict global minimum if

$$
f\left(x^{\star}\right)<f(x) \quad \text { for all } \quad x \in D_{a} \quad \text { s. t. } x \neq x^{\star} .
$$

It is sometimes said that x^{\star} is a minimum of $f(x)$, but this is a misnomer. The exact term, if x^{\star} realizes a minimum of f, is that it is a minimizer of f, denoted

$$
x^{\star}=\underset{x \in D_{a}}{\operatorname{argmin}} f(x)
$$

Definition of a maximum

To find the maximum of f we search the minimum of $-f$.

General Optimization problem

 exemple $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$$$
f(x)=\|x\|^{2}=\sum_{i=1}^{n} x_{i}^{2}
$$

Definition : Let $F: V \rightarrow \mathbb{R}$ with V normed vector space. F is coercive iff $\lim _{\|x\|+\infty} F(x)=+\infty$.
Property : If F is continuous, F has a minimum on every compact set $\subset E$
Property : A function $F(x)$ from a finite dimensional space V into \mathbb{R} which is continuous and coercive admits at least one minimum

Optimization applied to differential problems: Calculus of Variations

Let $V_{0}=\left\{u \in C^{2}([0,1]), u(0)=u(1)=0\right\}$ and $g: \mathbb{R}^{3} \rightarrow \mathbb{R}$, $g \in \mathcal{C}^{1}$.

$$
\begin{gathered}
\mathcal{J}(u)=\int_{0}^{1} g\left(x, u(x), u^{\prime}(x)\right) d x, \quad u \in V_{0} . \\
D \mathcal{J}(u)(v)=\left\langle-\frac{d}{d x} \frac{\partial g}{\partial u^{\prime}}\left(x, u, u^{\prime}\right)+\frac{\partial g}{\partial u}\left(x, u, u^{\prime}\right), v\right\rangle_{L^{2}([0,1])} .
\end{gathered}
$$

Euler-Lagrange Theorem: An extremum of \mathcal{J} satisfies

$$
-\frac{d}{d x} \frac{\partial g}{\partial u^{\prime}}\left(x, u, u^{\prime}\right)+\frac{\partial g}{\partial u}\left(x, u, u^{\prime}\right)=0
$$

Infinite dimension example

$$
\begin{aligned}
& \text { Let } V_{0}=\left\{u \in C^{2}([0,1]), u(0)=u(1)=0\right\}, f \in C^{1}([0,1]) \text { and } \\
& g: \mathbb{R}^{3} \rightarrow \mathbb{R}, g \in \mathcal{C}^{1} . \\
& \qquad \begin{array}{c}
\mathcal{J}(u)=\int_{0}^{1} \frac{1}{2} u^{\prime}(x)^{2}+\frac{1}{2} u(x)^{2}-f(x) u(x) d x, \quad u \in V_{0} . \\
g\left(x, u, u^{\prime}\right)=\frac{1}{2} u^{\prime 2}+\frac{1}{2} u^{2}-f(x) u . \\
=\int_{0}^{1}\left(-u^{\prime \prime}+u-f\right) v d x . \\
D \mathcal{J}(u)(v)=\left\langle-\frac{d}{d x} \frac{\partial g}{\partial u^{\prime}}\left(x, u, u^{\prime}\right)+\frac{\partial g}{\partial u}\left(x, u, u^{\prime}\right), v\right\rangle
\end{array} \\
& \mathcal{J}(\bar{u})=\min \mathcal{J}(u) \text { of }\left\{\begin{array}{l}
-u^{\prime \prime}+u=f \\
u(0)=u(1)=0
\end{array}\right) \quad \text { Boundary value }
\end{aligned}
$$

Canonical Continuous Optimization problem on \mathbb{R}^{n}

Find the extrema of a function $f(x)$ defined on \mathbb{R}^{n} (or part of \mathbb{R}^{n} in the case of a optimization with constraints).
Find
$\inf _{x \in \mathbb{R}^{n}} f(x)$,
with

$$
\begin{aligned}
& C^{E}(x)=0, \\
& C^{\prime}(x) 0 \quad\left(\Leftrightarrow C_{i}^{\prime}(x) \leq 0, i=1, \ldots, p\right) \\
& \text { in nequality conshamits }
\end{aligned}
$$

$$
\begin{array}{rll}
f & : & \mathbb{R}^{n} \longrightarrow \mathbb{R}, \\
C^{\prime} & : & \mathbb{R}^{n} \longrightarrow \mathbb{R}^{p}, \\
C^{E} & : & \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}, \quad f, C^{\prime}, C^{E}, \text { smooth }
\end{array}
$$

Admissible domain

$$
D_{a}=\left\{x \in \mathbb{R}^{n}, C^{E}(x)=0, C^{\prime}(x) \preceq 0\right\}
$$

Example 1: linear programming
lagrange multi fever

Example and admissible domain
$A=\left(\begin{array}{ll}1 & 6 \\ 2 & 2 \\ 4 & 1\end{array}\right), b=\left(\begin{array}{l}30 \\ 15 \\ 24\end{array}\right)$
$c=\binom{-2}{-1}$

Rewrite example 1 in canonical form

$$
\begin{aligned}
& -f: \mathbb{R}^{n} \rightarrow \mathbb{R} \quad f(x)=c^{\top} x \\
& \text { - } \theta^{8}= \\
& -C^{\prime} \div \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m+n} \\
& \text { - } D_{a} \text {, def, nature } \\
& C^{5}(x)=\binom{A x-b}{-x} n \leq
\end{aligned}
$$

Solve with the Python toolbox linprog

$$
\begin{aligned}
& \text { u }
\end{aligned}
$$

The problem must be written in the form expected by the program

$$
\begin{aligned}
& \min _{x} c^{T} x \\
& \text { such that } A_{u b} x(\preceq)_{u b} \\
& A_{e q} x=B_{e q} \\
& \quad \ell \preceq x \preceq u \\
& \text { lovan } \quad \text { upper }
\end{aligned}
$$

Solve with the Python toolbox linprog

```
c = [-2, -1]
Aub = [[1, 6], [2, 2], [4,1]]
Bub = [30,15,24]
lu = (0., None)
bounds=2*[lu]
res = scipy.optimize.linprog(c, A_ub=Aub,
b_ub=Bub, bounds=bounds)
```


Practical example

- A company stores a commodity in M warehouses.
- Each warehouse $i(i=1, \ldots, M)$ has a quantity q_{i} of goods in stock.
- The company has a network of N stores.
- Each store $j(j=1, \ldots, N)$ ordered a quantity r_{j} of goods.
- The problem is to minimize the cost of delivering goods to stores.

storos

Mathematical modelling

Let us denote

$$
\text { warchouser }\left(\begin{array}{llll}
v_{11} & -V_{12} & V_{N} v_{110} & V_{11} \\
& & & \\
& & & v_{M N}
\end{array}\right)
$$

- $v_{i, j}$ the quantity of merchandise shipped from warehouse i to store j
- $Q=\sum_{i=1}^{M} q_{i}$ the total quantity of goods available in the warehouses
- $R=\sum_{j=1}^{N} r_{j}$ the total quantity of goods ordered by the stores, assuming $Q \geq R$
- $D_{i, j}$ the cost of unit transport from the warehouse i to the store j, directly proportional to the distance between the store and the warehouse.

Rewriting as a linear programming problem

The problem (whose unknowns are the $v_{i, j}$) is therefore to minimize

$$
f(v)=\sum_{i=0}^{M-1} \sum_{j=0}^{N-1} D_{i, j} v_{i, j} \text { lireau }
$$

with respect to v, under the constraints
(i) $v_{i, j} \geq 0$ we do not return goods from a store to a warehouse
(ii) $\sum_{j=0}^{N-1} v_{i, j} \leq q_{i}$ a warehouse cannot supply more than its stock
(iii) $\sum_{i=0}^{M-1} v_{i, j}=r_{j}$ each store must receive the requested quantity

Solve with the Python toolbox linprog

```
scipy.optimize.linprog (c, A_ub=None,
B_ub=None, A_eq=None, B_eq=None, bounds=None,
method='interior-point', callback=None,
options=None, x0=None)
```

The problem must be written in the form expected by the program

$$
\begin{array}{cl}
\min _{x} & c^{T} x \\
\text { such that } & A_{u b} x \preceq B_{u b} \\
& A_{e q} x=B_{e q} \\
& \ell \preceq x \preceq u
\end{array}
$$

c, x, B_ub, b_eq are 1-D arrays or lists, A_ub, A_eq are $2-\mathrm{D}$ arrays or lists. bounds is a list of $21-\mathrm{D}$ lists

Solve with the Python toolbox linprog

We must therefore define Python structures

- $x \in \mathbb{R}^{N M \times 1}$ contains the solution matrix v unrolled in columns
- $c \in \mathbb{R}^{N M \times 1}$ contains the matrix D unrolled in columns
- Aub $\in \mathcal{M}_{M, M N}(\mathbb{R})$ contains 1 s in the right places so that $(\text { Aub } x)_{i}=\sum_{j=0}^{N-1} v_{i, j}$ for $i=0, \ldots, M-1$
- Bub $\in \mathbb{R}^{M}$ contains q (the warehouse stocks)
- Aeq $\in \mathcal{M}_{N, M N}(\mathbb{R})$ contains 1 s in the right places so that $(\text { Aeq } x)_{j}=\sum_{i=0}^{M-1} v_{i, j}$ for $j=0, \ldots, N-1$
- Beq $\in \mathbb{R}^{N}$ contains r (the store orders)
- $\ell \in \mathbb{R}^{N M \times 1}=0$

Solution Matlab du problème d'optimisation linéaire

Example 2 : Least Squares

Data $x_{i}, y_{i}, i=1, \ldots, n$
Linear model $y=a x+b$
Minimize $\sum_{i=1}^{n}\left(a x_{i}+b-y_{i}\right)^{2}$ with respect to $(a, b) \in \mathbb{R}^{2}$

Example 2 : Least Squares - vector formulation

$$
X=\left(\begin{array}{cc}
x_{1} & 1 \\
\vdots & \vdots \\
x_{n} & 1
\end{array}\right), \quad Y=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right), \quad P=\binom{a}{b}
$$

Minimize $\|Y-X P\|_{2}^{2}$ with respect to $P \in \mathbb{R}^{2}$

Rewrite Least Square problem in canonical form

$$
\inf _{x \in \mathbb{R}^{n}} f(x) \text { under constraints }\left\{\begin{array}{l}
C^{E}(x)=0 \\
C^{\prime}(x) \preceq 0
\end{array}\right.
$$

X and Y are parameters

$$
\triangle t: R^{2} \rightarrow \mathbb{R} \quad g(P)=\|X P-y\|^{2}
$$

- 8^{8}
$-e^{1}$
- D_{a}, def, nature
$D_{2}=\mathbb{R}^{2}$

Example 3 : Non differentiable convex Optimization

Parsimonious Least Squares Lasso (least absolute shrinkage and selection operator)

- Sociological models (e.g. explanation of academic success as a function of social, family, medical factors, etc.)
- Data $Y=\left(y_{i}\right)_{i=1, \ldots, n}, X=\left(x_{i, j}\right)_{i=1, \ldots, n, j=1, \ldots, p}$
- Linear model $\tilde{Y}=X P$, with $P \in \mathbb{R}^{p}$, using as few factors as possible
- Minimiz¢ $Y-X P \|_{T}^{2}+\underbrace{+P \|_{1}}_{T}$

$$
\|\left(P \|_{i}=\Sigma\left|P_{i}\right|\right.
$$

Example 5: Wave propagation in a stratified medium

 by "ray tracing"n parallel layers of thickness $h_{i}, i=1, \ldots, n$.
In each layer the speed of propagation is constant and equals $v_{i}, i=1, \ldots, n$.

Optimization problem

Path followed by the seismic wave from the source to a geophone on the surface, at distance D from the vertical of the epicenter.
Descartes' law
Snell's law

$$
\frac{\sin \left(\theta_{i}\right)}{v_{i}}=\text { constant }
$$

$$
f: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

Find the minimum travel tim \varnothing

$$
\begin{aligned}
& D=\sum_{i=1}^{n} d_{i} k^{k} \\
& d_{i}^{2}+h_{i}^{2}=v_{i}^{2} t_{i}^{2} \\
& d_{i}=\sqrt{r_{i}^{2} t_{i}^{2}-h_{i}^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& f(t)=\sum_{i=1}^{n} A_{i} \\
& C^{E}(t)=\sum \sqrt{v_{i}^{2} t_{j}^{2}-h_{i}^{2}}-D
\end{aligned}
$$

Canonical form of the optimization problem

$$
\inf _{x \in \mathbb{R}^{n}} f(x) \text { under constraints }\left\{\begin{array}{l}
C^{E}(x)=0, \\
C^{\prime}(x) \preceq 0
\end{array}\right.
$$

- f
- C^{E}
- C^{\prime}
- D_{a}, def, nature

Canonical form of the optimization problem

Choice of unknowns: $\left(t_{i}\right)_{i=1, \ldots, n}$ or $\left(d_{i}\right)_{i=1, \ldots, n}$

- If $X=\left(t_{i}\right)_{i=1, \ldots, n}$
$f(X)=\sum_{i=1}^{n} x_{i}$ and $C^{E}(x)=\sum_{i=1}^{n} \sqrt{v_{i}^{2} x_{i}^{2}-h_{i}^{2}}-D$
- If $X=\left(d_{i}\right)_{i=1, \ldots, n}$
$f(X)=\sum_{i=1}^{n} \frac{\sqrt{x_{i}^{2}+h_{i}^{2}}}{v_{i}}$ and $C^{E}(x)=\sum_{i=1}^{n} x_{i}-D$

Equality or inequality constraints

$$
C^{E}(x)=\sum_{i=1}^{n} x_{i}-D=0 \Leftrightarrow\left\{\begin{array}{l}
C_{1}^{\prime}(x)=\sum_{i=1}^{n} x_{i}-D \leq 0 \\
C_{2}^{\prime}(x)=D-\sum_{i=1}^{n} x_{i} \leq 0
\end{array}\right.
$$

Special case of absolute values

$$
\begin{array}{ll}
\inf _{x \in \mathbb{R}^{\mathbb{R}}} f(x) \text { under constraints }|g(x)| \preceq b & \left|g_{i}(x)\right| \leq b_{i} \\
\text { with } g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{d} \text { and } b \in \mathbb{R}_{+}^{d} & \quad \dot{i}=1, \ldots, d^{\prime}
\end{array}
$$

Define $C^{\prime} \cdot\left|g_{i}(x)\right| \leq b_{i} \Leftrightarrow-b_{i} \leq g_{i}(x) \leq b_{i}$

$$
\begin{aligned}
C^{I}: \mathbb{R}^{n} & \longrightarrow \mathbb{R}^{2 d} \\
x & \longmapsto C^{I}(x)=\binom{g(x)-b}{-b-g(x)} \begin{array}{l}
g_{j}(x)-b_{i} \leq 0 \\
-b_{i}-g_{i}(x) \leqslant 0 \\
\epsilon b l o c \text { of d componati } \\
\text { - boo of d component i }
\end{array}
\end{aligned}
$$

Example 6: Epidemy model

SIRC model
give 6 valus for P for $[0,2.5]$

- $S(t)$, proportion of susceptible persons
- $I(t)$, proportion of infected persons
- $R(t)$, proportion of recovered persons
- $C(t)$, proportion of cross immune persons

$$
\frac{d(\mathcal{S}()}{d t}=\left\{\begin{array}{l}
\dot{S}(t)=\mu(1-S)-\beta S I+\gamma C \\
\dot{I}(t)=\beta S I+\sigma \beta C I-(\mu+\alpha) I \tag{1}\\
\dot{R}(t)=(1-\sigma) \beta C I+\alpha I-(\mu+\delta) R \\
\dot{C}(t)=\delta R-\beta C I-(\mu+\gamma) C
\end{array}\right.
$$

Parameters $P=(\mu, \alpha, \beta, \gamma, \delta, \sigma)(M=6)$

Adequation of model with data

Data $\left(\tilde{I}_{j}\right)_{j=1, \ldots, d}$ to be compared with values predicted by the model $\left(I\left(t_{j}\right)\right)_{j=1, \ldots, d}$ green points
Proportion of flu in Paris region between Jan 2007 and April 2009 (source : "Reseau Sentinelle")

Rewrite Epidemic problem in canonical form

$$
\inf _{x \in \mathbb{R}^{n}} f(x) \text { under constraints }\left\{\begin{array}{l}
C^{E}(x)=0 \\
C^{\prime}(x) \preceq 0
\end{array}\right.
$$

- f
- C^{E}
- C^{\prime}
- D_{a}, def, nature

Exercise
A cylindrical container should hold $20 \pi m^{3}$. The price of the material constituting the bottom and the cover is 10 euros $/ \mathrm{m}^{2}$, that of the material constituting the sides is 8 euros $/ \mathrm{m}^{2}$. Write the optimisation problem to find the dimensions (radius r and height h) of the most economical container.

$S_{c}=\pi r^{2} \quad \rightarrow$ top and botloon
$S_{\text {side }}=2 \pi r h$
Constant : volume $=20 \pi m^{3}=\pi r^{2} h$

- $f(r, h)=10 \times S_{b t} t+8 \times S_{\text {side }}=20 \pi r^{2}+16 \pi r h$
- $C^{E}(r, h)=r^{2} h-20$
- $C^{\prime}: \mathbb{R}^{2} \rightarrow R^{2} \quad r, h \geqslant 0 \quad C^{F}(r, h)=\binom{-r}{-h}$
- D_{a}, def, nature

Outline

Course goals and terms
Introduction to Optimization

Reminders: Differential calculus

Convexity
Convex sets
Convex functions
Unconstrained optimisation
Optimality conditions in the unconstrained case
Solving systems of non linear equations
Descent methods
Optimisation with constraints
Duality
Algorithms for constrained optimization

Course goals and terms
Introduction to Optimization
Reminders : Differential calculus
Convexity
Convex sets
Convex functions
Unconstrained optimisation
Optimality conditions in the unconstrained case
Solving systems of non linear equations
Descent methods
Optimisation with constraints
Duality
Algorithms for constrained optimization

1st order differentiability $\quad \sigma(\|R\|)$ little 0 of \|R\|
a funchow $f(h)$ is a 0 (l\|k\|) if $\quad \frac{f(h)}{\|h\|} \xrightarrow{\longrightarrow} \rightarrow 0$

$$
\text { a } \theta\left(|\mid Q \|) \text { is } \exists c>0 \text { sit. } f_{0}(h) \leq C\|Q\|\right.
$$

h canal enough
Definition : Let E and F be two normed vector spaces. Let f be an application of E in F, We say that f is differentiable in the sense of Fréchet at x if there exists a continuous linear map L from E into F such that for all $h \in E$

$$
f(x+h)=f(x)+L(h)+o(\|h\|)
$$

and we note $\operatorname{Df}(x)=D f_{x}=L$, the differential of f at the point x.

$$
\begin{array}{r}
f(x+h)=f(x)+D f(x)(h)+\theta(\|e\|) \\
D f_{x}(h)
\end{array}
$$

Directional derivatives

Definition : We say that f is differentiable in the sense of Gâteaux at x if for all $h \in E$, the function $g(t)=f(x+t h)$ is differentiable. We denote by $\operatorname{Df}(x)$ the differential map of f in x which applies to $h \in E$

$$
D f(x) h=\frac{d f(x+t h)}{d t}_{\mid t=0} .
$$

and $\operatorname{Df}(x) h$ is the directional derivative at x according to the vector h.
Property : If a function is differentiable (in the sense of Fréchet) then its differential in the sense of Gâteaux exists (the converse not always being true).

Partial derivatives $\quad \mathbb{R}^{n} \quad e_{i}=\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right) i^{\text {th }}$ Row
E finite dimension
$\left(e_{i}\right)_{i=1, \ldots, n}$ basis of E
$x=\sum_{i=1}^{n} x_{i} e_{i}$
Partial derivative

$$
\frac{\partial f(x)}{\partial x_{i}}=D f(x) e_{i}
$$

Examples

1. $f: \mathbb{R} \rightarrow \mathbb{R}$, differentiable on \mathbb{R}
2. $L: E \rightarrow F$, linear with E and F nvs
3. $A: E \rightarrow F$, affine: $A(x)=L(x)+b$ with linear L and $b \in F$
4. $f(X)=\|X\|_{2}^{2}$, with $X \in \mathbb{R}^{n}$
5. $f: \mathbb{R}^{2} \rightarrow \mathbb{R}:\left(x_{1}, x_{2}\right) \mapsto \begin{cases}0 & \text { if }\left(x_{1}, x_{2}\right)=(0,0) \\ \frac{x_{1} x_{2}}{x_{1}^{2}+x_{2}^{2}} & \text { else }\end{cases}$
6. $f: \mathbb{R}^{2} \rightarrow \mathbb{R}:\left(x_{1}, x_{2}\right) \mapsto \begin{cases}0 & \text { if }\left(x_{1}, x_{2}\right)=(0,0) \\ \frac{\left(x_{2}^{2}-x_{1}\right)^{2}}{x_{1}^{2}+x_{2}^{4}} & \text { else }\end{cases}$
7. $f: \mathbb{R}^{2} \rightarrow \mathbb{R}:\left(x_{1}, x_{2}\right) \mapsto \begin{cases}0 & \text { if }\left(x_{1}, x_{2}\right)=(0,0) \\ \frac{x_{1}^{2} x_{2}}{x_{1}^{2}+x_{2}^{2}} & \text { else }\end{cases}$
$f: \mathbb{R} \rightarrow \mathbb{R}$, differentiable on \mathbb{R}
link between $d f(x)$ and $f^{\prime}(x)$

$$
\begin{aligned}
& f(x+h)=f(x)+h f^{\prime}(x)+\theta(|k|) \\
& f(x+h)=f(x)+D f^{\prime}(x)(h)+o(|h|)
\end{aligned}
$$

$\operatorname{Df}(x): \mathbb{R} \rightarrow \mathbb{R}$ linear function

$$
\begin{aligned}
& \mathbb{R} \rightarrow \mathbb{R}(x)=D f(x)(h)=f^{\prime}(x) h \\
& h \mapsto
\end{aligned}
$$

