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Course goals and terms

Introduction to Optimization

Reminders : Differential calculus

Convexity

Unconstrained optimisation

Optimisation with constraints
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Practical issues

I Final grade : weighted sum of following grades
I Python and math team assignments (at least 3)
I Final written exam (2 hours 16/02)

I There will be at least 3 Python hands on sessions in place
of regular classes

I Each hands on session will be followed by an evening
session to complete the program before handing it in
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Course objective

I Introduction to numerical methods of Optimization
I Improve programming skills
I Implementation and test of algorithms
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Why Python 3.1

I Ideal for building algorithm prototypes
I Flexible interactive graphics
I Widely used in business and all scientific sectors
I Performance worse than in a compiled language of high

level (C++, Fortran)
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Course map

I Introduction
I Introduction of Optimization
I Differential calculus revisions
I Convexity revisions
I Numerical approximation of derivatives

I Un-constrained Continuous Optimization
I Optimality conditions
I Nonlinear equations (Fixed point, Newton and

Quasi-Newton)
I Descent/Gradient algorithms

I Constrained Continuous Optimization
I Duality
I Optimality conditions with equality constraints
I SQP algorithm
I Optimality conditions with inequality constraints
I Uzawa algorithm
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Different categories of optimization

I Discrete optimization : variables in a discrete set
I Combinatorial <-> linear programming
I "NP-complete" (nondeterministic polynomial-time complete)
I Logistics, Economy (Traveling salesman, Knapsack, etc.)
I Heuristic methods : Hill climbing, Simulated annealing, Ant

colony, etc.
I Continuous optimization : variables within a range of

values
I Infinite dimensions : calculus of variations, shape

optimization, control theory
I Finite dimension : includes the discretization of above

problems
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Definition of a minimum

Def : Let f : V ! R with V normed vector space.
x? 2 Da ⇢ V achieves
I a local minimum on Da if there exists " > 0 such that

f (x?)  f (x) for all x 2 Da t.q. ||x � x?||  ".

I a strict local minimum if there exists " > 0 such that

f (x?) < f (x) for all x 2 Da s. t. x 6= x? and ||x � x?||  ".

11



Definition of a minimum

Def : x? 2 Da achieves
I a global minimum on Da if

f (x?)  f (x) for all x 2 Da.

I a strict global minimum if

f (x?) < f (x) for all x 2 Da s. t. x 6= x?.

It is sometimes said that x? is a minimum of f (x), but this is a
misnomer. The exact term, if x? realizes a minimum of f , is that
it is a minimizer of f , denoted

x? = argmin
x2Da

f (x)
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Definition of a maximum

To find the maximum of f we search the minimum of �f .
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General Optimization problem

Definition : Let F : V ! R with V normed vector space. F is
coercive iff lim

||x ||!+1
F (x) = +1.

Property : If F is continuous, F has a minimum on every
compact set ⇢ E
Property : A function F (x) from a finite dimensional space V
into R which is continuous and coercive admits at least one
minimum
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Optimization applied to differential problems : Calculus
of Variations

Let V0 = {u 2 C2([0, 1]), u(0) = u(1) = 0} and g : R3 ! R,
g 2 C1.

J (u) =
Z 1

0
g(x , u(x), u0(x))dx , u 2 V0.

DJ (u)(v) = h� d
dx

@g
@u0 (x , u, u

0) +
@g
@u

(x , u, u0), viL2([0,1]).

Euler-Lagrange Theorem: An extremum of J satisfies

� d
dx

@g
u0 (x , u, u

0) +
@g
u

(x , u, u0) = 0
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Infinite dimension example
Let V0 = {u 2 C2([0, 1]), u(0) = u(1) = 0}, f 2 C1([0, 1]) and
g : R3 ! R, g 2 C1.

J (u) =
Z 1

0

1
2

u0(x)2 +
1
2

u(x)2 � f (x)u(x)dx , u 2 V0.

g(x , u, u0) =
1
2

u02 +
1
2

u2 � f (x)u.

DJ (u)(v) = h� d
dx

@g
@u0 (x , u, u

0) +
@g
@u

(x , u, u0), vi

=

Z 1

0
(�u” + u � f )vdx .

J (ū) = minJ (u) iff
⇢

�u” + u = f
u(0) = u(1) = 0
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Canonical Continuous Optimization problem on Rn

Find the extrema of a function f (x) defined on Rn (or part of Rn

in the case of a optimization with constraints).
Find

inf
x2Rn

f (x),

under constraints

CE(x) = 0,
CI(x) � 0 (, CI

i (x)  0, i = 1, . . . , p)

with

f : Rn �! R,
CI : Rn �! Rp,

CE : Rn �! Rm, f ,CI ,CE , smooth

Admissible domain

Da = {x 2 Rn, CE(x) = 0, CI(x) � 0}
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Example 1: linear programming

Generic problem

(P)

8
<

:

Minimize cT x
under constraints Ax � b

x ⌫ 0
with

c and x 2 Rn,
b 2 Rm,
A 2 Mm⇥n(R)

Example and admissible domain

A =

0

@
1 6
2 2
4 1

1

A, b =

0

@
30
15
24

1

A

c =

✓
�2
�1

◆
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Rewrite example 1 in canonical form

infx2Rn f (x) under constraints
⇢

CE(x) = 0,
CI(x) � 0

I f
I CE

I CI

I Da, def, nature
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Solve with the Python toolbox linprog

scipy.optimize.linprog (c, A_ub=None,
B_ub=None, A_eq=None, B_eq=None, bounds=None,
method=’interior-point’, callback=None,
options=None, x0=None)
The problem must be written in the form expected by the
program

minx cT x
such that Aubx � Bub

Aeqx = Beq

` � x � u
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Solve with the Python toolbox linprog

c = [-2, -1]
Aub = [[1, 6], [2, 2], [4,1]]
Bub = [30,15,24]
lu = (0., None)
bounds=2*[lu]
res = scipy.optimize.linprog(c, A_ub=Aub,
b_ub=Bub, bounds=bounds)
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Practical example

I A company stores a commodity in M warehouses.
I Each warehouse i (i = 1, . . . ,M) has a quantity qi of goods

in stock.
I The company has a network of N stores.
I Each store j (j = 1, . . . ,N) ordered a quantity rj of goods.
I The problem is to minimize the cost of delivering goods to

stores.
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Mathematical modelling

Let us denote
I vi,j the quantity of merchandise shipped from warehouse i

to store j
I Q =

PM
i=1 qi the total quantity of goods available in the

warehouses
I R =

PN
j=1 rj the total quantity of goods ordered by the

stores, assuming Q � R
I Di,j the cost of unit transport from the warehouse i to the

store j , directly proportional to the distance between the
store and the warehouse.
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Rewriting as a linear programming problem

The problem (whose unknowns are the vi,j ) is therefore to
minimize

M�1X

i=0

N�1X

j=0

Di,j vi,j

with respect to v , under the constraints
(i) vi,j � 0 we do not return goods from a store to a

warehouse
(ii)

PN�1
j=0 vi,j  qi a warehouse cannot supply more than its

stock
(iii)

PM�1
i=0 vi,j = rj each store must receive the requested

quantity
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Solve with the Python toolbox linprog

scipy.optimize.linprog (c, A_ub=None,
B_ub=None, A_eq=None, B_eq=None, bounds=None,
method=’interior-point’, callback=None,
options=None, x0=None)
The problem must be written in the form expected by the
program

minx cT x
such that Aubx � Bub

Aeqx = Beq

` � x � u

c,x, B_ub, b_eq are 1-D arrays or lists, A_ub, A_eq are
2-D arrays or lists. bounds is a list of 2 1-D lists
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Solve with the Python toolbox linprog

We must therefore define Python structures
I x 2 RNM⇥1 contains the solution matrix v unrolled in

columns
I c 2 RNM⇥1 contains the matrix D unrolled in columns
I Aub 2 MM,MN(R) contains 1s in the right places so that

(Aub x)i =
PN�1

j=0 vi,j for i = 0, . . . ,M � 1
I Bub 2 RM contains q (the warehouse stocks)
I Aeq 2 MN,MN(R) contains 1s in the right places so that

(Aeq x)j =
PM�1

i=0 vi,j for j = 0, . . . ,N � 1
I Beq 2 RN contains r (the store orders)
I ` 2 RNM⇥1 = 0
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Solution Matlab du problème d’optimisation linéaire
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Example 2 : Least Squares

Data xi , yi , i = 1, . . . , n
Linear model y = ax + b
Minimize

Pn
i=1(axi + b � yi)

2 with respect to (a, b) 2 R2
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Example 2 : Least Squares - vector formulation

Data xi , yi , i = 1, . . . , n
Linear model y = ax + b

X =

0

B@
x1 1
...

...
xn 1

1

CA , Y =

0

B@
y1
...

yn

1

CA , P =

✓
a
b

◆

Minimize ||Y � XP||22 with respect to P 2 R2

30



Rewrite Least Square problem in canonical form

infx2Rn f (x) under constraints
⇢

CE(x) = 0,
CI(x) � 0

I f
I CE

I CI

I Da, def, nature
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Example 3 : Non differentiable convex Optimization

Parsimonious Least Squares Lasso (least absolute shrinkage
and selection operator )
I Sociological models (e.g. explanation of academic success

as a function of social, family, medical factors, etc.)
I Data Y = (yi)i=1,...,n, X = (xi,j)i=1,...,n,j=1,...,p

I Linear model Ỹ = XP, with P 2 Rp, using as few factors as
possible

I Minimize ||Y � XP||22 + ↵||P||1
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Example 5: Wave propagation in a stratified medium
by "ray tracing"

n parallel layers of thickness hi , i = 1, ..., n.
In each layer the speed of propagation is constant and equals
vi , i = 1, ..., n.

source

géophone

v1

v2

v3

v4

h1

h2

h
3

h
4

d1 d2
d4

D

v1
t 1

35



Optimization problem

Path followed by the seismic wave from the source to a
geophone on the surface, at distance D from the vertical of the
epicenter.
Descartes’ law

sin(✓i)

vi
= constant

Find the minimum travel time
X

i

ti under constraints

D =
Pn

i=1 di .
d2

i + h2
i = v2

i t2
i
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Canonical form of the optimization problem

infx2Rn f (x) under constraints
⇢

CE(x) = 0,
CI(x) � 0

I f
I CE

I CI

I Da, def, nature
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Canonical form of the optimization problem

Choice of unknowns: (ti)i=1,...,n or (di)i=1,...,n

I If X = (ti)i=1,...,n

f (X ) =
nX

i=1

xi and CE(x) =
nX

i=1

q
v2

i xi 2 � h2
i � D

I If X = (di)i=1,...,n

f (X ) =
nX

i=1

q
xi 2 + h2

i

vi
and CE(x) =

nX

i=1

xi � D
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Equality or inequality constraints

CE(x) =
nX

i=1

xi � D = 0 ,

8
>>>><

>>>>:

CI
1(x) =

nX

i=1

xi � D  0

CI
2(x) = D �

nX

i=1

xi  0
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Special case of absolute values

infx2Rn f (x) under constraints |g(x)| � b
with g : Rn ! Rd and b 2 Rd

+

Define CI
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Example 6: Epidemy model

SIRC model
I S(t), proportion of susceptibles persons
I I(t), proportion of infected persons
I R(t), proportion of recovered persons
I C(t), proportion of cross immuned persons

8
>>><

>>>:

Ṡ(t) = µ(1 � S)� �SI + �C,
İ(t) = �SI + ��CI � (µ+ ↵)I,
Ṙ(t) = (1 � �)�CI + ↵I � (µ+ �)R,

Ċ(t) = �R � �CI � (µ+ �)C,

(1)

Parameters P = (µ,↵,�, �, �,�) (M = 6)
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Adequation of model with data
Data (̃Ij)j=1,...,d to be compared with values predicted by the
model (I(tj))j=1,...,d
Proportion of flu in Paris region between Jan 2007 and April
2009 (source : "Reseau Sentinelle")

0 0.5 1 1.5 2 2.5
0

1

2

3

4

5

6
x 10ï3

 

 
modèle
données
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Rewrite Epidemic problem in canonical form

infx2Rn f (x) under constraints
⇢

CE(x) = 0,
CI(x) � 0

I f
I CE

I CI

I Da, def, nature
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Exercise
A cylindrical container should hold 20⇡m3. The price of the
material constituting the bottom and the cover is 10 euros /m2,
that of the material constituting the sides is 8 euros /m2. Write
the optimisation problem to find the dimensions (radius r and
height h) of the most economical container.

infx2Rn f (x) under constraints
⇢

CE(x) = 0,
CI(x) � 0

I f
I CE

I CI

I Da, def, nature

48



Outline
Course goals and terms

Introduction to Optimization
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Convex functions

Unconstrained optimisation
Optimality conditions in the unconstrained case
Solving systems of non linear equations
Descent methods

Optimisation with constraints
Duality
Algorithms for constrained optimization
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1st order differentiability

Definition : Let E and F be two normed vector spaces. Let f be
an application of E in F We say that f is differentiable in the
sense of Fréchet at x if there exists a continuous linear map L
from E into F such that for all h 2 E

f (x + h) = f (x) + L(h) + o(||h||),

and we note Df (x) = Dfx = L, the differential of f at the point x .
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Directional derivatives

Definition : We say that f is differentiable in the sense of
Gâteaux at x if for all h 2 E , the function g(t) = f (x + th) is
differentiable. We denote by Df (x) the differential map of f in x
which applies to h 2 E

Df (x)h =
df (x + th)

dt |t=0
.

and Df (x)h is the directional derivative at x according to the
vector h.
Property : If a function is differentiable (in the sense of Fréchet)
then its differential in the sense of Gâteaux exists (the converse
not always being true).
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Partial derivatives

E finite dimension
(ei)i=1,...,n basis of E
x =

Pn
i=1 xiei

Partial derivative

@f (x)
@xi

= Df (x)ei
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Examples

1. f : R ! R, differentiable on R

2. L : E ! F , linear with E and F nvs

3. A : E ! F , affine: A(x) = L(x) + b with linear L and b 2 F

4. f (X ) = ||X ||22, with X 2 Rn

5. f : R2 ! R : (x1, x2) 7!
(

0 if (x1, x2) = (0, 0)
x1x2

x2
1+x2

2
else

6. f : R2 ! R : (x1, x2) 7!
(

0 if (x1, x2) = (0, 0)
(x2

2�x1)
2

x2
1+x4

2
else

7. f : R2 ! R : (x1, x2) 7!
(

0 if (x1, x2) = (0, 0)
x2

1 x2
x2

1+x2
2

else
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f : R ! R, differentiable on R
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