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Course goals and terms
Introduction to Optimization
Reminders : Differential calculus
Convexity

Unconstrained optimisation

Optimisation with constraints



Practical issues

» Final grade : weighted sum of following grades

» Python and math team assignments (at least 3)
» Final written exam (2 hours 16/02)

» There will be at least 3 Python hands on sessions in place
of regular classes

» Each hands on session will be followed by an evening
session to complete the program before handing it in



Course objective

» Introduction to numerical methods of Optimization
» Improve programming skills
» Implementation and test of algorithms



Why Python 3.1

» |deal for building algorithm prototypes
» Flexible interactive graphics
» Widely used in business and all scientific sectors

» Performance worse than in a compiled language of high
level (C++, Fortran)



Course map

» [ntroduction

» Introduction of Optimization

» Differential calculus revisions

» Convexity revisions

» Numerical approximation of derivatives

» Un-constrained Continuous Optimization
» Optimality conditions
» Nonlinear equations (Fixed point, Newton and

Quasi-Newton)
» Descent/Gradient algorithms

» Constrained Continuous Optimization

» Duality

Optimality conditions with equality constraints
SQP algorithm

Optimality conditions with inequality constraints

>
>
>
» Uzawa algorithm



Introduction to Optimization



Different categories of optimization

» Discrete optimization : variables in a discrete set

» Combinatorial <-> linear programming

"NP-complete" (nondeterministic polynomial-time complete)
Logistics, Economy (Traveling salesman, Knapsack, etc.)
Heuristic methods : Hill climbing, Simulated annealing, Ant
colony, etc.

» Continuous optimization : variables within a range of
values

» Infinite dimensions : calculus of variations, shape
optimization, control theory

» Finite dimension : includes the discretization of above
problems

vyvyy
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Definition of a minimum

Def: Let f: V — R with V normed vector space.
x* € D, C V achieves

» a local minimum on D, if there exists € > 0 such that
f(x*) <f(x) forall xeD; tg. |x—x"|<e.
» a strict local minimum if there exists £ > 0 such that

f(x*) < f(x) forall xeD, s.tx#x"and|x—x*| <e.
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Definition of a minimum

Def : x* € D, achieves
» a global minimum on D; if

f(x*) <f(x) forall x e D,.
» a strict global minimum if
f(x*) < f(x) forall xeD; s.t x#x*.

It is sometimes said that x* is a minimum of 7(x), but this is a
misnomer. The exact term, if x* realizes a minimum of f, is that
it is a minimizer of f, denoted

X* = argmin f(x)
xeDg
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Definition of a maximum

To find the maximum of f we search the minimum of —f.
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General Optimization problem

e,ym’g(z g:]f{v\—éﬁ 3/;:): ”’1“2;42;‘)(1

Definition : Let F : V — R with V normed vector space. F is

coercive iff lim F(x) = +o0.
[ X[ =00

Property : If F is continuous, F has a minimum on every
compact set C E

Property : A function F(x) from a finite dimensional space V
iInto R which is continuous and coercive admits at least one
minimum
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Optimization applied to differential problems : Calculus
of Variations

Let Vo = {u e C?([0,1]), u(0) =u(1) =0}and g : R — R,
gecl.

J(u) = /01 g(x, u(x),u'(x))dx, ueW.

d o 0
DI (U)(v) = (=52 (X, U, U) + 52 (%, U, ), V) 2(p01)

Euler-Lagrange Theorem: An extremum of 7 satisfies

d 0g

0
—EW(X, u, u’) Jwﬁg(x, u,u)=0
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Infinite dimension example
Let Vo = {u € C?(]0,1]), u(0) ~ u(1) =0}, f € C'([0,1]) and
. 3 1 /
g:R3 R, geC. :h/ag[y)u/,,)/u/ﬂ)/(p&

J(u) = /01 %u’(x)2 + %u(x)2 — f(xX)u(x)dx, ue V.

1 1
/ 2 o
glx,u,u’) = 2 24 2 f(x)u.

DF(u)(v) = <—C%(%(x u,u') + %(X u,u),v)

- /1(—u” + u — f)vdx.

j(a):minj(u)iff{ (L(’) ilz/(:)f—o] %
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Canonical Continuous Optimization problem on R”

Find the extrema of a function 7(x) defined on R" (or part of R”
in the case of a optimization with constraints).

Find

inf f(x),

xeRN WW
under constramts E_Wb%

X)
x)@O (& Cl(x)<0,i=1,...,p)

with M

ct . R"—R" f C' CF. smooth
Admissible domain
D;={x €R", C5(x)=0, C'(x) 2 0}
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Example 1: linear programming

GK

Generic problem

(P) {

Example and admissible domain

1 6 30
A=12 2|,b=1[15
4 1 24

Minimize
under constraints

S Al

=S5 K ,QA' N—e&KoT N
g(«): Tz 2xC 2>= 2G%
c’x c and x € R",

Ax < b with b e R",

x>0 A € Mmxn(R)
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Rewrite example 1 in canonical form

» D, def, nature

19



Solve with the Python toolbox linprog

U

scipy.optimize.linprog (g A@None,
B_ub=None, @=None, E_edrNone, bounds=None,
method=’interior-point’, callback=None,

options=None, x0=None)
The problem must be written in the form expected by the

program

miny c'x
such that Aub@Bub

AeqX — Beq
(<x=Uu
o UgP
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Solve with the Python toolbox linprog

1]

c = [—-2,

Aub = [[1, o], [2, 2], [4,1]]

Bub = [30,15,24]

lu = (0., None)

bounds=2+[1u]

res = sclpy.optimize.linprog(c, A_ub=Aub,

b_ub=Bub, bounds=bounds)
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Practical example

» A company stores a commodity in M warehouses.

» Each warehouse i (i =1,..., M) has a quantity g; of goods
In stock.

» The company has a network of N stores.
» Eachstorej (j=1,...,N) ordered a quantity r; of goods.

» The problem is to minimize the cost of delivering goods to
stores.
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Lo

Mathematical modelling Voo <Y\l Vi
J
Let us denote ""“’/

> v;; the quantity of merchandise shipped from warehouse /
to store |

> Q=M. g the total quantity of goods available in the
warehouses

> R =3, r the total quantity of goods ordered by the
stores, assuming Q > R

» D;; the cost of unit transport from the warehouse / to the

store J, directly proportional to the distance between the
store and the warehouse.
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Rewriting as a linear programming problem

The problem (whose unknowns are the v; ) is therefore to

minimize
Jv) e 230w, Sl

with respect to v, under the constraints

() vi; > 0 we do not return goods from a store to a
warehouse

(i) /'\’01 vi; < q; a warehouse cannot supply more than its

stock

iy SM," vi; = r; each store must receive the requested
quantity
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Solve with the Python toolbox linprog

scilpy.optimize.linprog (c, A_ub=None,
B_ub=None, A_eg=None, B_eg=None, bounds=None,
method=’"interior—-point’, callback=None,

options=None, x0=None)
The problem must be written in the form expected by the

program

miny c’x
such that A px <X By
AegX = Beg
(<x=xU

c,x, B_ub, b_eqgare1-D arrays orlists, A_ub, A_eqgare
2-D arrays or lists. bounds is a list of 2 1-D lists



Solve with the Python toolbox linprog

We must therefore define Python structures

» x ¢ RVMx1 contains the solution matrix v unrolled in
columns

» ¢ e RNMX1 contains the matrix D unrolled in columns

> Aub € My, MN(R) contains 1s in the right places so that
(Aubx),_zjov,jfor/—o M —1

» Bub € RM contains g (the warehouse stocks)

> Aeq € My un(R) contains 1s in the right places so that
(Aeq x)j =S Mty forj=0,....,N—1

» Beg < RN contains r (the store orders)

> /[ c RNMX'I -0
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Solution Matlab du probleme d’optimisation linéaire

solution pour 6 entrepots et 30 magasins

14

12

10
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Example 2 : Least Squares

"ﬁ
>‘<

44— résidu

OR
Droite de régression de

il y en x de pente a et
d’origine b
» X P X
Data x;, y;, i=1,....n

Linear model y = ax + b
Minimize %ax,- + b — y;)? with respect to (g, b) € R?
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Example 2 ;: Least Squares - vector formulation

>‘<
»\1

4— résidu

O‘K
Droite de régression de

y en x de pente a et :
d’origine b '

P X

Data x;, y;, 1 = 1,
Linear model y = ax + b

( .- (2)

Xn

(Mc\ v bd— %)z g(a;k)

Minimize | Y — XP|35 with respect to P € R?
30



Rewrite Least Square problem in canonical form

CE(x) =0,
Cl(x) =<0

X owd Y one g
R R Rset

infxcrn f(X) under constraints {

L B
» D,, def, nature 0. = I

31



Example 3 : Non differentiable convex Optimization

Parsimonious Least Squares Lasso (least absolute shrinkage
and selection operator )

» Sociological models (e.g. explanation of academic success
as a function of social, family, medical factors, etc.)

» Data Y = (Vi)i=1,...n X = (Xij)i=1,..nj=1,...p

» Linear model Y = XP, with P € RP, using as few factors as
possible

> Minimizé |Y — XP|2 X of|P- (Pl < 5|6
T —
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Example 5: Wave propagation in a stratified medium
by "ray tracing”

n parallel layers of thickness h;,i =1, ..., n.
In each layer the speed of propagation is constant and equals
V/,i: 1,....N.

source |
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Optimization problem

Path followed by the seismic wave from the source to a
geophone on the surface, at distance D from the vertical of the

epicente
o A
Zsm‘fé’) — constant j g: K — P
I

Descartes’ law
/-\

T‘V\\’/QQ |'>

Find the minimum travel timg » " t; ynder constraints
i N .

Z/ 1d g
dd Fhe = Vet

o\,m cF(r)= ZM K-D
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Canonical form of the optimization problem

CE(x) =0,

infxcrn f(X) under constraints { Cl(x) < 0

> f

» CE

» C!

» D,, def, nature
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Canonical form of the optimization problem

f(X)=) ; and CE(x) =) x,—D

=1

— ____—
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Equality or inequality constraints

n
CE(x)=) xi—-D=0 &
i=1

39



Special case of absolute values

infxern f(X) under constraints | g(x)\ =< b 1@‘[’-\)4 Ll
with g : R” — R? and b € RY X

Define C! M‘GOI B s Lo Cé“(;‘\yf 50
cl: R YQZA N i \“Méic*\é 2

/ %(*)*\3 & Boc %’d Cqumrgoneds
| ~bo - g) = o dac 4 g

z > Cf('z):
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Example 6: Epidemy model ~ give 6 vs=iows &

AK€ K~ oDE

2.5
SIRC model %1 Zol 'l

» S(t), proportion of susceptibles persons

» [(t), proportion of infected persons

» R(t), proportion of recovered persons

» (C(t), proportion of cross immuned persons

%ﬁ) ~ S(1)
\

u(1 = 8) - BSI+~C,

I(1) BSI+ cBCl— (u+ a)l,

R(t) (1 —0)BCI + al — (1 + 6)R,
_ C(t) = 6R—BCI—(n+7)C,

Parameters P = (i, o, 3,7, 90,0) (M = 6)

o
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Adequation of model with data

Data (/;)j1....4 to be compared with values predicted by the
model (/(4))j=1,.a A &1

Proportion of flu in Paris region between Jan 2007 and April
2009 (source : "Reseau Sentinelle")

x107°

| | I o}\&a b Pose
~ T

42



Rewrite Epidemic problem in canonical form

CE(x) =0,

infxcrn f(X) under constraints { Cl(x) < 0

> f

» CE

» C!

» D,, def, nature
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Exercise

A cylindrical container should hold 207m?3. The price of the
material constituting the bottom and the cover is 10 euros /m?,
that of the material constituting the sides is 8 euros /m?. Write
the optimisation problem to find the dimensions (radius r and
height h) of the most economical container.

E _
infycrn f(X) under constraints C, (x) =0,
C'(x) =0
J& St o> bep amd el

; g@‘ﬂ* ; 77“&2\..'»0 - DT =T K

- ‘)'\ ~\— L\[719\
> f /| 2\3-40} Sh,‘\- ¥ gYS;‘!J{ ._ZO\ !
( | ~

Y2
;CE()?’?'\\:ﬁQ\—ZO A »
» ¢! ﬂl;fﬂpﬂ R, =D CL(%@\):/_L)

» D., def, nature
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Outline

Reminders : Differential calculus
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Reminders : Differential calculus
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1st order differentiability r((\\‘f:‘“ ik o & 11K

[N %VV\J(\O‘N &(_Q\\ & o G-C)\Q\\}( .gl%%/\—\“—-o:—:oﬁ
« Glw)ig Acso sh. )2 CIRN

Lo X Corald 9*"“‘#‘

Definition : Let E and F be two normed vector spaces. Let f be
an application of E in F, We say that f is differentiable in the
sense of Fréchet at x if there exists a continuous linear map L

from E into F such that forall he E
f(x + h) = f(x) + L(h) + o(|A[),

and we note Df(x) = Dfy = L, the differential of f at the pojnt x.
plesi) = ffx) 4 QA o-ClaV )
3.(%)
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Directional derivatives

Definition : We say that f is differentiable in the sense of
Gateaux at x if for all h € E, the function g(t) = f(x + th) is
differentiable. We denote by Df(x) the differential map of fin x
which appliesto h e E

df(x + th)
dt  |=0

Df(x)h =

and Df(x)h is the directional derivative at x according to the
vector h.

Property : If a function is differentiable (in the sense of Fréchet)
then its differential in the sense of Gateaux exists (the converse
not always being true).
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Partial derivatives ﬂ{'\

E finite dimension
(€i)i=1,...,n basis of E

Partial derivative

of(x) |
ox Df(x)e,;
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Examples

1. f: R — R, differentiable on R
. L: E— F,linear with E and F nvs
. A: E — F, affine: A(x) = L(x) + bwithlinear Land b e F

2
3
4

6.

/.

. f(X) = | X|2, with X € R”

f:R? = R: (X1, X0) > ¢

f:R2 = R: (X1, X) — <

f:R2 = R: (X1, X0) > ¢

0 If (X-| , X2) = (O, O)
1X2

X:; i else

0 if (X1,X2) = (0,0)
(X5 —x1)
A else

0 If (X1 , X2) = (O, O)
X else

X5+ X,
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f: R — R, differentiable on R |
Onk bdwern  dYx)  amd 269
,&(-« A %[z{) A X X/('x) + o (W)

X'x-\&\ g[w\.\. (X/ﬁ\(%} 4 G—(\Q\\>

| A Dgf*)( W)= {r('f')gj
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